skip to main content

Estimation Of Carbon Footprint Emission Consumption In Electricity From Individual Student: Case Study In Department Of Economics, Universitas Diponegoro

1Faculty of Economics and Business, University of Diponegoro, Indonesia

2Faculty of Economics and Business, State University of Surabaya, Indonesia

3Faculty of Economics and Business, University of Sultan Ageng Tirtayasa, Indonesia

Received: 7 Jan 2025; Revised: 17 Sep 2025; Accepted: 24 Sep 2025; Available online: 30 Sep 2025; Published: 8 Oct 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

This research aims to analyze estimated carbon footprint emissions based on daily electricity consumption, as well as provide strategies aimed at reducing greenhouse gas emissions. The method applies a quantitative approach using descriptive statistics. Data collection was obtained through purposive sampling of economics students at Diponegoro University, with a total sample of 61 students. The CO₂ emissions calculates by multiplying electricity use with the ESDM emission factor based on the 2006 IPCC Guidelines. The result shows that the estimated carbon footprint per category, which presents a comparison of the consumption of electronic goods among upper middle class and lower middle-class students, there are 3 categories: low, medium and high where cross tabulation obtained results in the low category of 93 percent out of a total of 100 percent. Therefore, the students who consume electricity resulting in carbon emissions at Diponegoro University are relatively low, reaching 93 percent and the highest consumption reaches 4.92 percent, which is still below 5 percent of the carbon consumption standard, which is a good achievement in helping to maintain the sustainability of the university's environment.

Note: This article has supplementary file(s).

Fulltext View|Download |  Data Analysis
Olah Data Jurnal_Mentari Anggun
Subject Carbon Footprint; Carbon Emission; Electricity; Greenhouse Gas; Global Warming
Type Data Analysis
  Download (262KB)    Indexing metadata
Keywords: Carbon Footprint; Carbon Emission; Electricity; Greenhouse Gas; Global Warming

Article Metrics:

  1. Abdul Maulud, K. N., Fitri, A., Wan Mohtar, W. H. M., Wan Mohd Jaafar, W. S., Zuhairi, N. Z., & Kamarudin, M. K. A. (2021). A study of spatial and water quality index during dry and rainy seasons at Kelantan River Basin, Peninsular Malaysia. Arabian Journal of Geosciences, 14(2), 85. https://doi.org/10.1007/s12517-020-06382-8
  2. Ajeng D. A., Rachmatika, Rosalina, E. (2023). Mengenal Perubahan Iklim (H. Imelda (ed.)). Indonesian Research Intitute for Decarbonization. https://irid.or.id/wp-content/uploads/2022/08/FINAL-Mengenal-Perubahan-Iklim.pdf
  3. Bera, M. (2022). Household Carbon Footprint: Rural and Urban Community. Journal of Ecology & Natural Resources, 6(2). https://doi.org/10.23880/jenr-16000278
  4. Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative and mixed methods approaches: Vol. null ((5th) (ed.))
  5. Doulabi, Z. H. G., & Hejazi, R. (2018). Ecological Study of Transportation Footprint in Pardis Citizens. Open Journal of Ecology, 08(01), 15–24. https://doi.org/10.4236/oje.2018.81002
  6. Fachri, M. R., Sara, I. D., & Away, Y. (2015). Pemantauan Parameter Panel Surya Berbasis Arduino secara Real Time. Jurnal Rekayasa Elektrika, 11(4), 123. https://doi.org/10.17529/jre.v11i3.2356
  7. Fitri, A., Hashim, R., Abolfathi, S., & Abdul Maulud, K. N. (2019). Dynamics of Sediment Transport and Erosion-Deposition Patterns in the Locality of a Detached Low-Crested Breakwater on a Cohesive Coast. Water, 11(8), 1721. https://doi.org/10.3390/w11081721
  8. Fitri, Y., Putri, A. N., & Retnawaty, S. F. (2020). Estimasi Emisi CO2 Dari Sektor Rumah Tangga Di Kota Pekanbaru. Photon: Jurnal Sain Dan Kesehatan, 11(1), 1–6. https://doi.org/10.37859/jp.v11i1.2061
  9. Galli, A., Wiedmann, T., Ercin, E., Knoblauch, D., Ewing, B., & Giljum, S. (2012). Integrating Ecological, Carbon and Water footprint into a “Footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecological Indicators, 16, 100–112. https://doi.org/10.1016/j.ecolind.2011.06.017
  10. Goldstein, B., Gounaridis, D., & Newell, J. P. (2020). The carbon footprint of household energy use in the United States. Proceedings of the National Academy of Sciences, 117(32), 19122–19130. https://doi.org/10.1073/pnas.1922205117
  11. IPCC. (2012). IPCC Fourth Assessment Report: Climate Change 2007 e the Physical Science Basis
  12. Julisman, A., Sara, I. D., & Siregar, R. H. (2017). Prototipe Pemanfaatan Panel Surya Sebagai Sumber Energi Pada Sistem Otomasi Stadion Bola. Kitektro, 2(1), 35–42
  13. Kementerian ESDM, Ketenagalistrikan, D. J. (2019). Pedoman Penghitungan dan Pelaporan Inventarisasi Gas Rumah Kaca (Revisi Jan). : Direktorat Teknik dan Lingkungan Ketenagalistrikan, Direktorat Jenderal Ketenagalistrikan, Kementerian Energi dan Sumber Daya Mineral
  14. Lenzen, M., Sun, Y.-Y., Faturay, F., Ting, Y.-P., Geschke, A., & Malik, A. (2018). The carbon footprint of global tourism. Nature Climate Change, 8(6), 522–528. https://doi.org/10.1038/s41558-018-0141-x
  15. Myori, D. E., Mukhaiyar, R., & Fitri, E. (2019). Sistem Tracking Cahaya Matahari pada Photovoltaic. INVOTEK: Jurnal Inovasi Vokasional Dan Teknologi, 19(1), 9–16. https://doi.org/10.24036/invotek.v19i1.548
  16. Pratiwi, D., & Fitri, A. (. (2021). Analisis Potensial Penjalaran Gelombang Tsunami di Pesisir Barat Lampung, Indonesia. Jurnal Teknik Sipil, 8(1), 29–37
  17. Putra, A., Indra, A., & Afriyastuti, H. (2019). Prototipe Sistem Irigasi Otomatis Berbasis Panel Surya Menggunakan Metode PID Dengan Sistem Monitoring IoT
  18. Qian, C., Chen, J., & Sun, C. (2023). Carbon footprint and emission reduction potential of the artwork auction market. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1029939
  19. Rahmadania, N. (2022). Pemanasan Global Penyebab Efek Rumah Kaca dan Penanggulangannya. Jurnal Teknik Sipil, 2(3)
  20. Rocha, C. F. A. P. da, Silva, C. de S. T. P. da, Silva, R. M. da, Oliveira, M. J. da S., & Neto, B. de A. F. (2023). The Dietary Carbon Footprint of Portuguese Adults: Defining and Assessing Mitigation Scenarios for Greenhouse Gas Emissions. Sustainability, 15(6), 5278. https://doi.org/10.3390/su15065278
  21. Salim, Shyam S. Shridhar, N. (2019). Carbon emissions in Indian marine fisheries sector: Cradle to Grave Analysis. Climate Change, 5(19), 200–210
  22. Sipayung, T. (2023). Waspada GHG (Greenhouse Gases) Terhadap Krisis Lingkungan. https://palmoilina.asia/sawit-hub/greenhouse-gases-efek-rumah-kaca/
  23. Suwarni, E., Rosmalasar, T. D., Fitri, A., & Rossi, F. (2021). Sosialisasi Kewirausahaan Untuk Meningkatkan Minat dan Motivasi Siswa Mathla’ul Anwar. Jurnal Pengabdian Masyarakat Indonesia, 1(4), 157–163. https://doi.org/10.52436/1.jpmi.28
  24. UNFCCC (United Nations Framework Convention on Climate Change). (2022). United Nations Carbon Offset Platform. https://unfccc.int/climate-action/united-nations-carbon-offset-platform
  25. Wardhana, E. M. (2016). Estimasi Jejak Karbon Kapal Perikanan Berdasarkan Moda Operasi - Study Case Di Perairan Wilayah Papua. Institute Teknologi Sepuluh November
  26. Wiedmann, T. and Minx, J. (2008). A Definition of Carbon Footprint. Ecological Economics Research Trends, 1, 1–11
  27. Wulandari, M.T., Hermawan, dan P. (2013). Kajian Emisi CO2 Berdasarkan Penggunaan Energi Rumah Tangga Sebagai Penyebab Pemanasan Global (Studi Kasus Perumahan Sebantengan, Gedang Asri, Susukan RW 07 Kab. Semarang). Prosiding Seminar Nasional Pengelolaan Sumberdaya Alam Dan Lingkungan
  28. Yao, L., Ye, X., Huang, X., Zheng, K., Fitri, A., & Lestari, F. (2021). Numerical simulation of hydraulic performance with free overfall flow. IOP Conference Series: Earth and Environmental Science, 880(1), 012028. https://doi.org/10.1088/1755-1315/880/1/012028
  29. Zhang, X., Luo, L., & Skitmore, M. (2015). Household carbon emission research: an analytical review of measurement, influencing factors and mitigation prospects. Journal of Cleaner Production, 103, 873–883. https://doi.org/10.1016/j.jclepro.2015.04.024
  30. Zhitomirsky-Geffet, M., & Blau, M. (2016). Cross-generational analysis of predictive factors of addictive behavior in smartphone usage. Computers in Human Behavior, 64, 682–693. https://doi.org/10.1016/j.chb.2016.07.061
  31. Zhu, X., Shi, S., Si, J., Fitri, A., Pratiwi, D., & Agustina, A. (2021). Numerical simulation of hydraulic optimization for regulating tank in pumping station. IOP Conference Series: Earth and Environmental Science, 880(1), 012020. https://doi.org/10.1088/1755-1315/880/1/012020

Last update:

No citation recorded.

Last update: 2025-10-09 03:33:50

No citation recorded.