skip to main content


*Farid Wajdi  -  Universitas Serang Raya, Indonesia
Fajar Herkuntarto  -  Universitas Serang Raya, Indonesia
Gina Ramayanti  -  Universitas Serang Raya, Indonesia

Citation Format:
The production of precast spun piles generates solid and liquid waste products. The solid waste consists of stone, sand, and mud materials, while the liquid waste consists of K-600 grade concrete cement mixed with water. It is poured into a 1m3 container and solidifies within 3 hours. The production process of precast concrete piles is fast, which results in quick waste accumulation in the factory area. This research aims to transform the waste into paving blocks suitable for road construction. The Taguchi method is employed to determine the optimal strength of the paving blocks using three variables: (1) the ratio of solid to liquid waste in three levels - 70:30%, 60:40%, and 50:50%, (2) mixing time in three levels - 5, 10, and 15 minutes, and (3) curing time in three levels - 3, 7, and 14 days. The strength of the paving blocks is tested by measuring the maximum compressive strength. The results indicated that the best combination for achieving maximum compressive strength was using (1) a 50%:50% ratio of solid to liquid waste, (2) a curing time of 14 days, and (3) a mixing time of 5 minutes, resulting in a maximum compressive strength of 125.72 Kg/cm2. It is equivalent to Grade D paving blocks that are suitable for road application.
Fulltext View|Download
Keywords: paving block; industrial waste; precast concrete; Taguchi; circular economy

Article Metrics:

  1. Alam, M. A., Ya, H. H., Azeem, M., Hussain, P. Bin, Salit, M. S. bin, Khan, R., Arif, S., & Ansari, A. H. (2020). Modelling and optimisation of hardness behaviour of sintered Al/SiC composites using RSM and ANN: A comparative study. Journal of Materials Research and Technology, 9(6), 14036–14050.
  2. Alqarni, A. S., Albidah, A., Abbas, H., Almusallam, T., & Al-Salloum, Y. (2022). Concrete Performance Produced Using Recycled Construction and By-Product Industrial Waste Coarse Aggregates. Materials, 15(24).
  3. Anggraini, S. D., Nuruddin, A. W., Trisanjaya, K., Kalista, A., & Mu’minin, A. (2019). Desain Eksperimen Kuat Tekan Paving Block dengan Bahan Tambah Abu Batu Bara (Fly Ash) dengan Metode Taguchi. Seminar Nasional IENACO – 2019, 193–200
  4. Anwar, F. H., El-Hassan, H., Hamouda, M., El-Mir, A., Mohammed, S., & Mo, K. H. (2022). Optimization of Pervious Geopolymer Concrete Using TOPSIS-Based Taguchi Method. Sustainability, 14(8767), 1–20.
  5. Awolusi, T. F., Sojobi, A. O., Oguntayo, D. O., Akinkurolere, O. O., & Orogbade, B. O. (2021). Effects of calcined clay, sawdust ash and chemical admixtures on Strength and Properties of concrete for pavement and flooring applications using Taguchi approach. Case Studies in Construction Materials, 15(January), e00568.
  6. Faisal, A., Abbas, S., Kazmi, S. M. S., & Munir, M. J. (2023). Development of Concrete Mixture for Spun-Cast Full-Scale Precast Concrete Pipes Incorporating Bundled Steel and Polypropylene Fibers. Materials, 16(2).
  7. Ganesh, A. C., Mohana, R., Loganathan, P., Kumar, V. M., Kırgız, M. S., Nagaprasad, N., & Ramaswamy, K. (2023). Development of alkali activated paver blocks for medium traffic conditions using industrial wastes and prediction of compressive strength using random forest algorithm. Scientific Reports, 13(1), 1–14.
  8. Han, X., Du, Z., Wang, P., Zhang, R., Gao, J., Ling, Z., & Wei, D. (2023). Multi-scale microstructure quantitative characterization and anti-erosion performance of PHC pipe pile. Construction and Building Materials, 406, 133464.
  9. Hossain, N., Bhuiyan, M. A., Pramanik, B. K., Nizamuddin, S., & Griffin, G. (2020). Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: A critical review. Journal of Cleaner Production, 255.
  10. Ikeagwuani, C. C., Nwonu, D. C., Ugwu, C. K., & Agu, C. C. (2020). Process parameters optimization for eco-friendly high strength sandcrete block using Taguchi method. Heliyon, 6(6), e04276.
  11. Imran, M., Shamin, N., Sangkertadi, & Cynthia E. V. Wuisang. (2020). Development of Paving Blocks to Reduce Environmental Heat by Using Mixed Materials. Solid State Technology, 63(6), 6916–6926
  12. Khedmatgozar Dolati, S. S., & Mehrabi, A. (2021). Alternative Systems and Materials for Splicing Prestressed-Precast Concrete Piles. Transportation Research Record, 03611981211052949.
  13. Olofinnade, O., Morawo, A., Okedairo, O., & Kim, B. (2021). Solid waste management in developing countries: Reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production. Case Studies in Construction Materials, 14.
  14. Peraturan Pemerintah Republik Indonesia Nomor 74. (2001). PP No. 74 Tahun 2001: Pengelolaan Bahan Berbahaya dan Beracun. Pengelolaan Bahan Berbahaya Dan Beracun, 1, 1–5
  15. Pereira, J. B., & Maciel, G. F. (2021). Automated slump test: An effective alternative in predicting rheological properties and an efficient tool for providing the quality control of materials. Measurement: Journal of the International Measurement Confederation, 178(February), 109384.
  16. Refani, A. N., & Nagao, T. (2023). Corrosion Effects on the Mechanical Properties of Spun Pile Materials. Applied Sciences (Switzerland), 13(3).
  17. SNI 03-4810-1998. (1998). Sni 03-4810-1998. In Metode pembuatan dan perawatan benda uji beton di lapangan. Pusjatan - Balitbang PU
  18. SNl 03-0691-1996. (1996). Standar Nasional Indonesia 03-0691-1996. Dewan Standarisasi Nasional - DSN
  19. Solouki, A., Tataranni, P., & Sangiorgi, C. (2022). Mixture Optimization of Concrete Paving Blocks Containing Waste Silt. Sustainability (Switzerland), 14(1), 1–15.
  20. Wang, X., Chin, C. S., & Xia, J. (2023). Study on the properties variation of recycled concrete paving block containing multiple waste materials. Case Studies in Construction Materials, 18(December 2022), e01803.

Last update:

No citation recorded.

Last update: 2024-07-25 05:28:59

No citation recorded.