skip to main content

DETEKSI CACAT DAN PENGUKURAN JARUM JAHIT MENGGUNAKAN COMPUTER VISION DAN MACHINE LEARNING: TINJAUAN PUSTAKA SISTEMATIS (SLR)

*Fennyka Rahmawati  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Masih ditemukan kerusakan jahitan akibat interaksi antara jarum dan kain mempengaruhi optimalisasi operasi. Mesin jahit industri memiliki kecepatan tinggi dapat menyebabkan jarum jahit patah selama proses penjahitan. Patahan jarum jahit yang masih tertinggal akan memperburuk kerusakan pada serat kain. Deteksi cacat mendapat perhatian lebih bertujuan untuk menjaga kualitas produk. Pemanfaatan teknologi seperti computer vision dan machine learning mempermudah proses deteksi lebih cepat dan akurat. Basis data Scopus digunakan untuk mengekstrak artikel, yang mana hasil informasi akan divisualisasi perangkat lunak VOSViewer. Penelitian ini memberi gambaran umum yang komprehensif dan analisis bibliometrik dari studi publikasi terkait deteksi cacat dan pengukuran di bidang tekstil dalam kurun waktu 10 tahun terakhir yang didapatkan 131 artikel pada pencarian 23 Desember 2024. Walaupun terdapat peningkatan yang signifikan, namun tidak ditemukan pada deteksi cacat khusus jarum jahit dalam tren melainkan banyak ditemukan deteksi cacat pada jahitan dan kain. Metode yang paling sering digunakan adalah transformasi hough, GLCM, morphology sebagai fitur ekstraksi. Sementara dalam klasifikasi kecacatan yang paling banyak digunakan adalah support vector machine (SVM) dan Artificial Neural Network (ANN). Tiongkok memimpin jumlah publikasi terbanyak. Textile Research journal merupakan jurnal paling produktif dalam bidang penelitian ini.

 

Abstract

[Defect Detection and Sewing Needle Measurement Using Computer Vision and Machine Learning: Systematic Literature Review (SLR)] Sewing damage is still found due to the interaction between the needle and the fabric affecting the optimization of operations. Industrial sewing machines have high speeds that can cause sewing needles to break during the sewing process. Broken sewing needles that are still left will worsen the damage to the fabric fibers. More focus has been placed on defect identification in order to preserve product quality. The detection procedure is facilitated more quickly and precisely by the use of technologies like computer vision and machine learning. After articles are extracted from the Scopus database, the information is shown using VOSViewer software. The 131 papers that the search on December 23, 2024, turned up for this study's thorough examination and bibliometric analysis of published works regarding flaw detection and measurement in the textile sector during the past ten years. There was a noticeable rise in sewing and fabric fault detections, even if the trend did not find any particular issues with sewing needles. Artificial neural networks (ANN) and support vector machines (SVM) are the most used methods for classifying faults. The country with the most publications is China. The most fruitful journal in this area of study is Textile Research.

Keywords: bibliometric analysis; defect detection; broken needle; extraction method; classification method

Fulltext View|Download
Keywords: analisis bibliometrik; deteksi cacat; jarum patah; metode ekstraksi, metode klasifikasi

Article Metrics:

  1. Abd-Elhamied, M. R., Hashima, W. A., ElKateb, S., Elhawary, I., & El-Geiheini, A. (2022). Prediction of cotton yarn’s characteristics by image processing and ANN. Alexandria Engineering Journal, 61(4), 3335-3340
  2. https://doi.org/10.1016/j.aej.2021.08.057
  3. Abdelkader, M. (2022). MATLAB Algorithms for Diameter Measurements of Textile Yarns and Fibers through Image Processing Techniques. Materials, 15(4)
  4. https://doi.org/10.3390/ma15041299
  5. Abouelela, A., Abbas, H. M., Eldeeb, H., Wahdan, A. A., & Nassar, S. M. (2005). Automated vision system for localizing structural defects in textile fabrics. Pattern Recognition Letters, 26(10), 1435–1443. https://doi.org/10.1016/j.patrec.2004.11.016
  6. Bhardwaj, A. K., Garg, A., Ram, S., Gajpal, Y., & Zheng, C. (2020). Research trends in green product for environment: A bibliometric perspective. International Journal of Environmental Research and Public Health, 17(22), 1–21. https://doi.org/10.3390/ijerph17228469
  7. Brad, R., Barac, L., & Brad, R. (2014). Defect Detection Techniques for Airbag Production Sewing Stages. Journal of Textiles, 2014, 1–7. https://doi.org/10.1155/2014/738504
  8. Branscomb, D., & Beale, D. G. (2011). Fault detection in braiding utilizing low-cost USB machine vision. Journal of the Textile Institute, 102(7), 568–581. https://doi.org/10.1080/00405000.2010.498174
  9. Chen, Y., Deng, N., Xin, B. J., Xing, W. Y., & Zhang, Z. Y. (2019). Structural characterization and measurement of nonwoven fabrics based on multi-focus image fusion. Measurement, 141, 356-363
  10. https://doi.org/10.1016/j.measurement.2019.04.034
  11. Chen, Y., Ding, Y., Zhao, F., Zhang, E., Wu, Z., & Shao, L. (2021). Surface defect detection methods for industrial products: A review. In Applied Sciences (Switzerland) (Vol. 11, Issue 16). MDPI AG. https://doi.org/10.3390/app11167657
  12. Das, S., Wahi, A., & Jayaram, S. (2023). Defect detection in textiles using back propagation neural classifier. Materials Protection, 64(3), 308–313. https://doi.org/10.5937/zasmat2303308D
  13. Deotale, N. T., & Sarode, T. K. (2019). Fabric defect detection adopting combined GLCM, Gabor wavelet features and random decision forest. 3D Research, 10, 1-13
  14. https://doi.org/10.1007/s13319-019-0215-1
  15. Farrukh, M., Meng, F., Raza, A., & Tahir, M. S. (2020). Twenty‐seven years of Sustainable Development Journal: A bibliometric analysis. Sustainable Development, 28(6), 1725–1737. https://doi.org/10.1002/sd.2120
  16. Hanbay, K., Talu, M. F., Özgüven, Ö. F., & Öztürk, D. (2019). Real-Time Detection of Knitting Fabric Defects Using Shearlet Transform. Tekstil Ve Konfeksiyon. https://doi.org/10.32710/tekstilvekonfeksiyon.448737
  17. Joshi, K. D., Chauhan, V., & Surgenor, B. (2020). A flexible machine vision system for small part inspection based on a hybrid SVM/ANN approach. Journal of Intelligent Manufacturing, 31(1), 103–125. https://doi.org/10.1007/s10845-018-1438-3
  18. Kuo, C. F. J., Wang, W.-R., & Barman, J. (2022). Automated Optical Inspection for Defect Identification and Classification in Actual Woven Fabric Production Lines. Sensors, 22(19), 7246. https://doi.org/10.3390/s22197246
  19. Kwak, C., Ventura, J. A., & Tofang-Sazi, K. (2000). A Neural Network Approach for Defect Identification and Classification on Leather Fabric. Journal of Intelligent Manufacturing, 11(5), 485–499. https://doi.org/10.1023/A:1008974314490
  20. Lei, B., Ren, Y., Wang, N., Huo, L., & Song, G. (2020). Design of a new low-cost unmanned aerial vehicle and vision-based concrete crack inspection method. Structural Health Monitoring, 19(6), 1871–1883. https://doi.org/10.1177/1475921719898862
  21. Lei, G., & Li, X. (2022). A new approach to 3D pattern-making for the apparel industry: Graphic coding-based localization. Computers in Industry, 136, 103587
  22. https://doi.org/10.1016/j.compind.2021.103587
  23. Lieberman, M. A., Bragg, C. K., & Brennan, S. N. (1998). Determining Gravimetric Bark Content in Cotton with Machine Vision. Textile Research Journal, 68(2), 94–104. https://doi.org/10.1177/004051759806800203
  24. Mak, K. L., Peng, P., & Yiu, K. F. C. (2009). Fabric defect detection using morphological filters. Image and Vision Computing, 27(10), 1585–1592. https://doi.org/10.1016/j.imavis.2009.03.007
  25. Mengist, W., Soromessa, T., & Legese, G. (2020). Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Science of The Total Environment, 702, 134581. https://doi.org/10.1016/j.scitotenv.2019.134581
  26. Millman, M. P., Acar, M., & Jackson, M. R. (2001). Computer vision for textured yarn interlace (nip) measurements at high speeds. Mechatronics, 11(8), 1025–1038. https://doi.org/https://doi.org/10.1016/S0957-4158(00)00056-8
  27. Pereira, F., Macedo, A., Pinto, L., Soares, F., Vasconcelos, R., Machado, J., & Carvalho, V. (2023). Intelligent Computer Vision System for Analysis and Characterization of Yarn Quality. Electronics (Switzerland), 12(1). https://doi.org/10.3390/electronics12010236
  28. Ramos-Giraldo, P., Reberg-Horton, C., Locke, A. M., Mirsky, S., & Lobaton, E. (2020). Drought Stress Detection Using Low-Cost Computer Vision Systems and Machine Learning Techniques. IT Professional, 22(3), 27–29
  29. https://doi.org/10.1109/MITP.2020.2986103
  30. Salem, Y. Ben, & Nasri, S. (2010). Automatic recognition of woven fabrics based on texture and using SVM. Signal, Image and Video Processing, 4(4), 429–434. https://doi.org/10.1007/s11760-009-0132-5
  31. Seçkin, M., Seçkin, A. Ç., Demircioglu, P., & Bogrekci, I. (2023). FabricNET: A Microscopic Image Dataset of Woven Fabrics for Predicting Texture and Weaving Parameters through Machine Learning. Sustainability, 15(21), 15197. https://doi.org/10.3390/su152115197
  32. Seçkin, A. Ç., & Seckin, M. (2022). Detection of fabric defects with intertwined frame vector feature extraction. Alexandria Engineering Journal, 61(4), 2887-2898
  33. https://doi.org/10.1016/j.aej.2021.08.017
  34. Süle, İ. (2014). The determination of the twist level of the Chenille yarn using novel image processing methods: Extraction of axial grey-level characteristic and multi-step gradient based thresholding. Digital Signal Processing, 29, 78-99
  35. https://doi.org/10.1016/j.dsp.2013.12.015
  36. Tantaswadi, P., Vilainatre, J., Tamaree, N., & Viraivan, P. (1999). Machine Vision for Automated Visual Inspection of Cotton Quality in Textile Industries Using Color Isodiscrimination Contour. Computers & Industrial Engineering
  37. Valentino, M., Behal, J., Tonetti, C., Carletto, R. A., Itri, S., Memmolo, P., ... & Ferraro, P. (2024). Discernment of textile fibers by polarization-sensitive Digital Holographic microscope and machine learning. Optics and Lasers in Engineering, 181, 108395
  38. https://doi.org/10.1016/j.optlaseng.2024.108395
  39. Xing, W., Deng, N., Xin, B., Wang, Y., Chen, Y., & Zhang, Z. (2019). An image-based method for the automatic recognition of cashmere and wool fibers. Measurement, 141, 102-112
  40. https://doi.org/10.1016/j.measurement.2019.04.015
  41. Zhang, L., Dehghani, A., Su, Z., King, T., Greenwood, B., & Levesley, M. (2005a). Development of a mechatronic sorting system for removing contaminants from wool. IEEE/ASME Transactions on Mechatronics, 10(3), 297–304. https://doi.org/10.1109/TMECH.2005.848298
  42. Zhang, L., Dehghani, A., Su, Z., King, T., Greenwood, B., & Levesley, M. (2005b). Real-time automated visual inspection system for contaminant removal from wool. Real-Time Imaging, 11(4), 257–269
  43. https://doi.org/10.1016/j.rti.2004.09.003
  44. Zhang, L., Levesley, M., Dehghani, A., & King, T. (2005). Integration of sorting system for contaminant removal from wool using a second computer. Computers in Industry, 56(8–9), 843–853
  45. https://doi.org/10.1016/j.compind.2005.05.011

Last update:

No citation recorded.

Last update: 2025-06-07 23:32:41

No citation recorded.