skip to main content

Logam Berat dan Probabilistik Penilaian Risiko Kesehatan Melalui Konsumsi Beras dari Lahan Sawah di Hulu Sungai Citarum

Balai Penelitian Lingkungan Pertanian Jl. Raya Jakenan-Jaken Km.5 Kotak Pos 5, Jaken Pati Jawa Tengah, Indonesia

Open Access Copyright 2022 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Beras merupakan salah satu makanan pokok masyarakat Indonesia sehingga perlu adanya jaminan keamanan pada beras khususnya bebas dari cemaran logam berat. Penelitian ini bertujuan untuk mengetahui kandungan konsentrasi logam berat pada beras yang ditanam pada lahan pertanian di Kabupaten Bandung dan menganalisis risiko kesehatan masyarakat yang mengkonsumsi beras tersebut.

Metode: penentuan lokasi pengambilan contoh dilakukan dengan metode purposive sampling pada lahan pertanian yang siap panen di beberapa kecamatan di Kabupaten Bandung dengan jumlah contoh beras sebanyak 26 sampel. Analisis logam berat yang dilakukan adalah analisis logam berat Pb, Cd, Cr, Ni, Co, Cu dan Zn dengan ekstrak HNO3:HClO4 dan diukur menggunakan Atomic Absorbption Spectrophotometer (AAS). Analisis probabilistik penilaian risiko kesehatan masyarakat dilakukan dengan menganalisis nilai estimated daily intake (EDI), estimated weekly intake (EWI), risiko non-karsinogenik dan risiko karsinogenik.

Hasil: semua contoh beras mengandung logam berat Cr, Co, Cu dan Zn dengan nilai konsentrasi berturut-turut berkisar antara 0.64-2.28 mgkg-1, 1.18-2.66 mgkg-1, 0.64-3.47 mgkg-1 dan 5.44-8.69 mgkg-1. Konsentrasi logam Cu pada contoh beras yang diambil pada lahan pertanian kawasan industri berbeda nyata dengan contoh beras di luar kawasan industri dengan nilai p sebesar 0.014. Risiko non-karsinogenik yang ditimbulkan jika mengkonsumsi beras dari lahan pertanian Kabupaten Bandung tidak mungkin untuk terjadi karena nilai hazard index (HI) menunjukkan angka <1, nilai HI secara berurutan yaitu anak-anak (0.0880)>remaja (0.0370)>dewasa (0.0259)>manula (0.0281) dan risiko karsinogenik juga menunjukkan nilai yang dapat ditoleransi karena di bawah 10-4 untuk semua katogeri umur (anak-anak, remaja, dewasa, manula) dengan nilai cancer risk (CR) berturut-turut sebesar 6.15x10-7, 6.72x10-7, 2.53x10-6 dan 2.74x10-6.

Simpulan: beras yang dihasilkan dari lahan pertanian di Kabupaten Bandung aman untuk dikonsumsi oleh masyarakat karena risiko kesehatan yang ditimbulkan masih dapat ditoleransi

 

ABSTRACT

Title: Heavy Metals and Probabilistic Risk Assessment Via Rice Consumption From Rice Fields in Upstream of The Citarum River

Background: Rice is one of the staple foods of the Indonesian people, so it is necessary to guarantee the safety of rice, especially free from heavy metal contamination. This study aims to determine the concentration of heavy metals in rice grown on agricultural land in Bandung Regency and analyze the health risks of the people who consume the rice.

Method: the determination of location of sampling was carried out by purposive sampling method on agricultural land that was ready for harvest in several sub-districts in Bandung Regency with a total of 26 samples of rice. Heavy metal analysis carried out was heavy metal analysis of Pb, Cd, Cr, Ni, Co, Cu and Zn with HNO3:HClO4 extract and measured using Atomic Absorption Spectrophotometer (AAS). Probabilistic analysis of public health risk assessment was carried out by analyzing the estimated daily intake (EDI), estimated weekly intake (EWI), non-carcinogenic risk and carcinogenic risk.

Results: all rice samples contained Cr, Co, Cu and Zn metals with concentration values ranging from 0.64-2.28 mgkg-1, 1.18-2.66 mgkg-1, 0.64-3.47 mgkg-1 and 5.44-8.69 mgkg-1, respectively. The concentration of Cu metal in rice samples taken on agricultural land in industrial areas was significantly different from rice samples outside industrial areas with a p value of 0.01. The non-carcinogenic risk caused by consuming rice from agricultural land in Bandung Regency is unlikely to occur because the hazard index (HI) value shows the number <1, the HI values are children (0.0880)>adolescents (0.0370)>adults (0.0259 )> the elderly (0.0281) and the carcinogenic risk also shows a value that can be tolerated because it was below 10-4 for all age categories (children, adolescents, adults and the elderly) with a cancer risk (CR) value of 6.15x10-7, 6.72x10-7, 2.53x10-6 and 2.74x10-6.

Conclution: Rice produced from agricultural land in Bandung Regency is safe for consumption by the community because the health risks caused are still tolerable.

Note: This article has supplementary file(s).

Fulltext View|Download |  ES
Etichal Statement
Subject
Type ES
  Download (200KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
 CTA
Copyright Transfer Agreement
Subject
Type CTA
  Download (315KB)    Indexing metadata
Keywords: beras; Citarum; logam berat; risiko kesehatan

Article Metrics:

  1. Shi Y, Zhou K, Li S, Zhou M, Liu W. Heterogeneous graph attention network for food safety risk prediction. J Food Eng. 2022;323(February). https://doi.org/10.1016/j.jfoodeng.2022.111005
  2. Sun D, Liu Y, Grant J, Long Y, Wang X, Xie C. Impact of food safety regulations on agricultural trade: Evidence from China’s import refusal data. Food Policy. 2021;105(September). https://doi.org/10.1016/j.foodpol.2021.102185
  3. Liguori J, Trübswasser U, Pradeilles R, Le Port A, Landais E, Talsma EF, Lundy M, Bene C, Bricas N, Laar A, Amiot MJ, Brouwer ID, Holdsworth M. How do food safety concerns affect consumer behaviors and diets in low- and middle-income countries? A systematic review. Glob Food Sec. 2022;32. https://doi.org/10.1016/j.gfs.2021.100606
  4. Buscaroli E, Braschi I, Cirillo C, Fargue-Lelièvre A, Modarelli GC, Pennisi G, Pennisi G, Righini L, Specht K, Orsini. Reviewing chemical and biological risks in urban agriculture: A comprehensive framework for a food safety assessment of city region food systems. Food Control. 2021;126. https://doi.org/10.1016/j.foodcont.2021.108085
  5. Li Y, Ma L, Ge Y, Abuduwaili J. Health risk of heavy metal exposure from dustfall and source apportionment with the PCA-MLR model: A case study in the Ebinur Lake Basin, China. Atmos Environ. 2022;272(October 2021). https://doi.org/10.1016/j.atmosenv.2022.118950
  6. Wei J, Gao J, Cen K. Levels of eight heavy metals and health risk assessment considering food consumption by China’s residents based on the 5th China total diet study. Sci Total Environ. 2019;689:1141–8. https://doi.org/10.1016/j.scitotenv.2019.06.502
  7. Pandion K, Khalith SBM, Ravindran B, Chandrasekaran M, Rajagopal R, Alfarhan A, Chang SW, Ayyamperumal R, Mukherjee A, Arunachalam KD. Potential health risk caused by heavy metal associated with seafood consumption around coastal area. Environ Pollut. 2022;294(November 2021). https://doi.org/10.1016/j.envpol.2021.118553
  8. Habib MR, Hoque MM, Kabir J, Akhter S, Rahman MS, Moore J, et al. A comparative study of heavy metal exposure risk from the consumption of some common species of cultured and captured fishes of Bangladesh. J Food Compos Anal. 2022;108(February). https://doi.org/10.1016/j.jfca.2022.104455
  9. Biswas C, Soma SS, Rohani MF, Rahman MH, Bashar A, Hossain MS. Assessment of heavy metals in farmed shrimp, Penaeus monodon sampled from Khulna, Bangladesh: An inimical to food safety aspects. Heliyon. 2021;7(3):1–9. https://doi.org/10.1016/j.heliyon.2021.e06587
  10. Afonne OJ, Ifediba EC. Heavy metals risks in plant foods – need to step up precautionary measures. Curr Opin Toxicol. 2020;22:1–6. https://doi.org/10.1016/j.cotox.2019.12.006
  11. Al-Saleh I, Abduljabbar M. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk. Int J Hyg Environ Health. 2017;220(7):1168–78. https://doi.org/10.1016/j.ijheh.2017.07.007
  12. Akarsu SA, Türk G, Arkalı G, Çeribaşı AO, Yüce A. Changes in heavy metal levels, reproductive characteristics, oxidative stress markers and testicular apoptosis in rams raised around thermal power plant. Theriogenology. 2022;179:211–22. https://doi.org/10.1016/j.theriogenology.2021.12.004
  13. Lee N, Wang H, Du C, Yuan T, Chen C, Yu C, et al. Air-polluted environmental heavy metal exposure increase lung cancer incidence and mortality : A population-based longitudinal cohort study. 2022;810(579). https://doi.org/10.1016/j.scitotenv.2021.152186
  14. Gerwen M Van, Alerte E, Alsen M, Little C, Sinclair C, Genden E. Journal of Trace Elements in Medicine and Biology The role of heavy metals in thyroid cancer : A meta-analysis. 2022;69(November 2021). https://doi.org/10.1016/j.jtemb.2021.126900
  15. Duan W, Xu C, Liu Q, Xu J, Weng Z, Zhang X, Basnet TB, Dahal M, Gu A. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: A population-based cohort study. Environ Pollut. 2020;263. https://doi.org/10.1016/j.envpol.2020.114630
  16. Sohrabi M, Nikkhah M, Sohrabi M, Rezaee Farimani A, Mirasgari Shahi M, Ziaie H, Shirmardi S, Kohi Z, Salehpour D, Tameshkel FS, Hajibaba M, Zamani F, Ajdarkosh H, Sohrabi M, Gholami A. Evaluating tissue levels of the eight trace elements and heavy metals among esophagus and gastric cancer patients: A comparison between cancerous and non-cancerous tissues. J Trace Elem Med Biol. 2021;68(October 2020). https://doi.org/10.1016/j.jtemb.2021.126761
  17. Mirzaeyan P, Shokrzadeh M, Salehzadeh A, Ajamian F. Association of estrogen receptor 1 (ESR1) gene (rs2234693) polymorphism, ESR1 promoter methylation status, and serum heavy metals concentration, with breast cancer: A study on Iranian women population. Meta Gene. 2020;26(October). https://doi.org/10.1016/j.mgene.2020.100802
  18. Lim JT, Tan YQ, Valeri L, Lee J, Geok PP, Chia SE, Ong CN, Seow WJ. Association between serum heavy metals and prostate cancer risk – A multiple metal analysis. Environ Int. 2019;132(April). https://doi.org/10.1016/j.envint.2019.105109
  19. Tóth G, Hermann T, Da Silva MR, Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int [Internet]. 2016;88:299–309. Available from: http://dx.doi.org/10.1016/j.envint.2015.12.017
  20. Qin G, Niu Z, Yu J, Li Z, Ma J. Soil heavy metal pollution and food safety in China : Effects , sources and removing technology. 2021;267. https://doi.org/10.1016/j.chemosphere.2020.129205
  21. Fei X, Xiao R, Christakos G, Langousis A, Ren Z, Tian Y, Lv Xiaonan. Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecol Indic. 2019;106(198). https://doi.org/10.1016/j.ecolind.2019.105508
  22. Wisnawa PDPK, Siaka IM, Putra AAB. Kandungan Logam Pb dan Cu Dalam Buah Stroberi Serta Spesiasi Dan Bioavailabilitasnya Dalam Tanah Tempat Tumbuh Stroberi di Daerah Bedugul. J Kim. 2019;10 (1):23–31
  23. Badan Pusat Statistik. Berita resmi statistik No. 21/03/Th. XXV, 1 Maret 2022: luas panen dan produksi padi di Indonesia 2021 (Angka tetap). BPS RI. 2022;
  24. Badan Pusat Statistik Kabupaten Bandung. Kabupaten Bandung dalam angka 2019. BPS Kabupaten Bandung. 2019;
  25. Kirana KH, Novala GC, Fitriani D, Agustine E, Rahmaputri MD, Fathurrohman F, et al. Identifikasi Kualitas Air Sungai Citarum Hulu. 2019;4(2):120–8. https://doi.org/10.17509/wafi.v4i2.21907
  26. Dzikrillah GF, Sutjahjo H, Surjono. Analisis Keberlanjutan Usahatani Padi Sawah Di Kecamatan Soreang Kabupaten Bandung Sustainable of Rice Farming in Soreang District of Bandung Regency. J Pengelolaan Sumberd Alam dan Lingkung. 2017;7(2):107. https://doi.org/10.29244/jpsl.7.2.107-113
  27. Eviati, Sulaeman. Petunjuk Teknis Edisi 2 Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. 2nd ed. Bogor: Balai Penelitian Tanah; 2009
  28. Sisay B, Debebe E, Meresa A, Abera T. Analysis of cadmium and lead using atomic absorption spectrophotometer in roadside soils of Jimma town. J Anal Pharm Res. 2019;8(4):144–7. https://doi.org/10.15406/japlr.2019.08.00329
  29. Djahed B, Taghavi M, Farzadkia M, Norzaee S, Miri M. Stochastic exposure and health risk assessment of rice contamination to the heavy metals in the market of Iranshahr, Iran. Food Chem Toxicol. 2018;115(December 2017):405–12. https://doi.org/10.1016/j.fct.2018.03.040
  30. FAO/WHO CAC. General Standard for Contaminants and Toxins in Food and Feed (CODEX STAN 193–1995. Revised in 1997, 2008, 2009, and amended in 2010, 2012, 2013, 2014, 2015 (Ed.). 1995;
  31. Jafari A, Kamarehie B, Ghaderpoori M, Khoshnamvand N, Birjandi M. The concentration data of heavy metals in Iranian grown and imported rice and human health hazard assessment. Data Br. 2018;16:453–9. https://doi.org/10.1016/j.dib.2017.11.057
  32. U.S. Environtemtal Protection Agency (U.S.EPA). Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A) Interim Final (EPA/540/1-89/002). https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf. 1989;
  33. Hossain MM, Chowdhury MA, Hasan MJ, Rashid MHA, Acter T, Khan MN, et al. Heavy metal pollution in the soil-vegetable system of Tannery Estate. Environ Nanotechnology, Monit Manag. 2021;16(August). https://doi.org/10.1016/j.enmm.2021.100557
  34. Anaman R, Peng C, Jiang Z, Liu X, Zhou Z, Guo Z, Xiao X. Science of the Total Environment Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. 2022;823. https://doi.org/10.1016/j.scitotenv.2022.153759
  35. Panhwar A, Faryal K, Kandhro A, Bhutto S, Rashid U, Jalbani N, Sultana R, Solangi A, Ahmed M, Qaisar S, Solangi Z, Gorar M, Sargani E. Utilization of treated industrial wastewater and accumulation of heavy metals in soil and okra vegetable. Environ Challenges. 2022;6(January). https://doi.org/10.1016/j.envc.2022.100447
  36. Swarnkumar Reddy, Osborne WJ. Heavy metal determination and aquatic toxicity evaluation of textile dyes and effluents using Artemia salina. Biocatal Agric Biotechnol. 2020;25(March). https://doi.org/10.1016/j.bcab.2020.101574
  37. Heliopoulos NS, Papageorgiou SK, Galeou A, Favvas EP, Katsaros FK, Stamatakis K. Effect of copper and copper alginate treatment on wool fabric. Study of textile and antibacterial properties. Surf Coatings Technol. 2013;235:24–31. https://doi.org/10.1016/j.surfcoat.2013.07.009
  38. Selvam K, Albasher G, Alamri O, Sudhakar C, Selvankumar T, Vijayalakshmi S, Vennila L Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes. 2022;211(January). https://doi.org/10.1016/j.envres.2022.113046
  39. Kaur H, Singh J, Rani P, Kaur N, Kumar S, Rawat M, et al. A novel and one-pot synthesis of Punica granatum mediated Copper oxide having flower-like morphology as an efficient visible-light driven. 2022; https://doi.org/10.1016/j.molliq.2022.118966
  40. Nasab H, Rajabi S, Eghbalian M, Malakootian M, Hashemi M, Mahmoudi-Moghaddam H. Association of As, Pb, Cr, and Zn urinary heavy metals levels with predictive indicators of cardiovascular disease and obesity in children and adolescents. Chemosphere. 2022;294(December 2021). https://doi.org/10.1016/j.chemosphere.2022.133664
  41. Kukusamude C, Sricharoen P, Limchoowong N, Kongsri S. Heavy metals and probabilistic risk assessment via rice consumption in Thailand. Food Chem. 2021;334(December 2019). https://doi.org/10.1016/j.foodchem.2020.127402
  42. Nyambura C, Hashim NO, Chege MW, Tokonami S, Omonya FW. Cancer and non-cancer health risks from carcinogenic heavy metal exposures in underground water from Kilimambogo, Kenya. Groundw Sustain Dev. 2020;10(March 2019):100315. Available from: https://doi.org/10.1016/j.gsd.2019.100315

Last update:

No citation recorded.

Last update: 2024-11-20 00:58:20

No citation recorded.