skip to main content

Association between Air Pollutants and Levels of Macrophage Inflammatory Protein-2 in Purwokerto Informal Workers

1Master of Biomedical Science Program, Faculty of Medicine, Faculty of Medicine, Universitas Jenderal Soedirman, Jl. Dr. Gumbreg No.1, Purwokerto, Central Java 53112, Indonesia

2Department of Public Health and Community Medicine, Faculty of Medicine, Universitas Jenderal Soedirman, Jl. Dr. Gumbreg No.1, Purwokerto, Central Java 53112, Indonesia

Open Access Copyright 2025 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Judul : Hubungan Pencemaran Udara dengan Kadar Protein Inflamasi Makrofag-2 pada Pekerja Informal Purwokerto

Latar belakang: Tingkat polusi udara di Indonesia telah meningkat secara signifikan dalam dekade terakhir, yang sejalan dengan peningkatan insidensi gangguan pada sistem pernapasan, termasuk Penyakit Paru Obstruktif Kronik (PPOK). Deteksi dini gangguan sistem pernapasan akibat polusi udara menggunakan penanda biologis berpotensi mencegah keparahan penyakit meskipun masih diperlukan penelitian lebih lanjut. Penelitian ini bertujuan untuk Penelitian ini bertujuan menganalisis hubungan antara pajanan polutan udara dengan kadar Macrophage Inflammatory Protein-2 (MIP-2) pada pekerja sektor informal di Purwokerto, Kabupaten Banyumas, Provinsi Jawa Tengah.

Metode: Studi belah lintang dilakukan pada 35 pekerja parkir luar ruang dan 35 pekerja informal dalam ruang di Purwokerto pada Maret 2021. Kadar particulate matter (PM) diukur menggunakan particle counter sebagai parameter tingkat polusi udara. Kadar. MIP-2 diukur dari sampel darah partisipan dengan menggunakan metode ELISA. Data dianalisis menggunakan Uji Mann-Whitney, Korelasi Spearman, dan analisis multivariat dengan Generalized Linear Model untuk mengevaluasi hubungan antara paparan polutan udara dan kadar MIP-2.

Hasil: Kadar polutan udara di luar ruangan lebih tinggi dibandingkan di dalam ruangan (p=0,00), dan kadar MIP-2 lebih tinggi pada pekerja di luar ruangan dibandingkan pekerja di dalam ruangan (p=0,00). Kadar debu tidak berkorelasi dengan kadar MIP-2, baik pada pekerja di dalam ruangan (r=0,03; p=0,85), pekerja di luar ruangan (r=-0,31; p=0,07), maupun secara keseluruhan (r=0,20; p=0,09). Lama kerja total dan per hari juga tidak memiliki korelasi dengan kadar MIP-2 pada pekerja. Analisis multivariat menunjukkan tidak adanya hubungan antara durasi paparan dan kadar MIP-2 setelah dikendalikan oleh variabel usia dan kadar polusi udara.

Simpulan: Terdapat perbedaan signifikan antara kadar debu dan kadar MIP-2 di lokasi luar ruangan dibandingkan dengan dalam ruangan. Pajanan polutan udara, baik dari segi tingkat maupun durasi, secara konsisten tidak berkorelasi dengan kadar MIP-2 pada pekerja. Penelitian lebih lanjut diperlukan untuk memahami interaksi antara paparan polutan udara, kadar MIP-2, dan kondisi klinis gangguan pernapasan yang disebabkan oleh polusi udara.

 

ABSTRACT

Background: Air pollution level has significantly increased in Indonesia followed by the increase in respirational disorders such as Chronic Obstructive Pulmonary Disease (COPD) in the last decade. Early detection of air pollution-related respiratory disorders using biological markers potentially reduces the severity of these diseases, but further studies are still required. This research seeks to evaluate the relationship between exposure to air pollutants and Macrophage Inflammatory Protein-2 (MIP-2) levels among informal workers in Purwokerto, Banyumas District, Central Java Province.

Method:  A cross-sectional study was carried out in March 2021 involving 35 informal outdoor workers and 35 indoor workers in Purwokerto. Particulate matter (PM) concentration was assessed using a particle counter, serving as an indicator of air pollution level. MIP-2 serum level was measured from participants' blood samples using the ELISA method. The Mann-Whitney test, Spearman correlation test, and multivariate analysis using the Generalized Linear Model were employed to assess the relationship between air pollutant exposure and MIP-2 serum levels.

Result: The levels of air pollution (p=0.00) and MIP-2 serum (p=0.00) were significantly elevated in outdoor environments compared to indoor environment.  Exposure to air pollutants did not show a significant correlation with MIP-2 serum levels in outdoor workers (r=-0.31; p=0.07), indoor workers (r=0.03; p=0.85), or overall (r=0.20; p=0.09). The overall and daily working duration did not show a correlation with the MIP-2 serum levels in the workers. Multivariate analysis indicated that there was no association between the duration of exposure and MIP-2 levels when adjusted for age and air pollution level.

Conclusions:  There were notable differences in air pollutant levels and MIP-2 serum levels between indoor and outdoor environments. Air pollutant exposure, both in duration and level, consistently did not correlate with the MIP-2 serum level of workers. Further studies are required to understand the interactions among air pollutant exposure, MIP-2 serum level, and clinical conditions of air pollution-related respiratory disorders.

Note: This article has supplementary file(s).

Fulltext View|Download |  CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (461KB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (677KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (531KB)    Indexing metadata
Keywords: Microphage Inflammatory Protein-2 (MIP-2); Informal workers; Chronic Obstructive Pulmonary Diseases; Air pollution

Article Metrics:

  1. Ruhiat F, Heryadi D, - A. Strategi NGO Lingkungan Dalam Menangani Polusi Udara di Jakarta (Greenpeace Indonesia). Andalas J Int Stud 2019;8(1):16–30; https://doi.org/10.25077/ajis.8.1.16-30.2019
  2. Greenstone M, Fan Q. Indonesia’s Worsening Air Quality and Its Impact on Life Expectancy. 2019
  3. Babatola SS. Global burden of diseases attributable to air pollution. J Public Health Africa 2018;9(3): 162-66; https://doi.org/10.4081/jphia.2018.813
  4. Somboonsin P, Canudas-Romo V. Mortality attributable to fine particulate matter in Asia, 2000–2015: a cross-sectional cause-of-death analysis. BMJ Open 2021;11(5): 1-8; https://doi.org/10.1136/bmjopen-2020-043605
  5. Mannucci PM, Franchini M. Health Effects of Ambient Air Pollution in Developing Countries. Int J Environ Res Public Heal 2017, Vol 14, Page 1048 2017;14(9):1-8; https://doi.org/10.3390/ijerph14091048
  6. Ji W, Park YR, Kim HRH-C, et al. Prolonged Effect of Air Pollution on Pneumonia: A Nationwide Cohort Study. European Respiratory Society; 2017. https://doi.org/10.1183/1393003.congress-2017.OA467
  7. Laucho-Contreras ME, Cohen-Todd M. Early diagnosis of COPD: Myth or a true perspective. Eur Respir Rev 2020;29(158):1–10; doi: 10.1183/16000617.0131-2020.https://doi.org/10.1183/16000617.0131-2020
  8. Fazleen A, Wilkinson T. Early COPD: current evidence for diagnosis and management. Ther Adv Respir Dis 2020;14:1-13; https://doi.org/10.1177/1753466620942128
  9. Henrot P, Prevel R, Berger P, et al. Chemokines in COPD: From implication to therapeutic use. Int J Mol Sci 2019;20(11): 1-26; https://doi.org/10.3390/ijms20112785
  10. Stockley RA, Halpin DMG, Celli BR, et al. Chronic obstructive pulmonary disease biomarkers and their interpretation. Am J Respir Crit Care Med 2019;199(10):1195–1204; https://doi.org/10.1164/rccm.201810-1860SO
  11. Washko GR, Parraga G. COPD biomarkers and phenotypes: Opportunities for better outcomes with precision imaging. Eur Respir J 2018;52(5): 1-11; https://doi.org/10.1183/13993003.01570-2018
  12. Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, et al. Aeroparticles, Composition, and Lung Diseases. Front Immunol 2016;7(3): 1-9; https://doi.org/10.3389/fimmu.2016.00003
  13. Li J, An Z, Song J, et al. Fine particulate matter-induced lung inflammation is mediated by pyroptosis in mice. Ecotoxicol Environ Saf 2021;219:1-9; https://doi.org/10.1016/j.ecoenv.2021.112351
  14. Chan YL, Wang B, Chen H, et al. Pulmonary inflammation induced by low-dose particulate matter exposure in mice. Am J Physiol - Lung Cell Mol Physiol 2019;317(3):424–430; https://doi.org/10.1152/ajplung.00232.2019
  15. Matzer SP, Baumann T, Lukacs NW, et al. Constitutive Expression of Macrophage-Inflammatory Protein 2 (MIP-2) mRNA in Bone Marrow Gives Rise to Peripheral Neutrophils with Preformed MIP-2 Protein. J Immunol 2001;167(8):4635–4643; https://doi.org/10.4049/jimmunol.167.8.4635
  16. Keane MP. The role of chemokines and cytokines in lung fibrosis. Eur Respir Rev 2008;17(109):151–15`6; https://doi.org/10.1183/09059180.00010908
  17. Pedroza M, Schneider DJ, Karmouty-Quintana H, et al. Interleukin-6 contributes to inflammation and remodeling in a model of Adenosine mediated lung injury. PLoS One 2011;6(7): 1-13; https://doi.org/10.1371/journal.pone.0022667
  18. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFα in pulmonary pathophysiology. Respir Res 2006;7(1):1-9; https://doi.org/10.1186/1465-9921-7-125
  19. She YX, Yu QY, Tang XX. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov 2021;7(1): 1-10; https://doi.org/10.1038/s41420-021-00437-9
  20. d’Alessandro M, Bergantini L, Cameli P, et al. Krebs von den Lungen-6 as a biomarker for disease severity assessment in interstitial lung disease: a comprehensive review. Biomark Med 2020;14(8):675–682; https://doi.org/10.2217/bmm-2019-0545
  21. Long H, Shi T, Borm PJ, et al. ROS-mediated TNF-α and MIP-2 gene expression in alveolar macrophages exposed to pine dust. Part Fibre Toxicol 2004;1(1):1–8; https://doi.org/10.1186/1743-8977-1-3
  22. Larcombe AN, Iosifidis T, Foong RE, et al. Exacerbation of chronic cigarette-smoke induced lung disease by rhinovirus in mice. Respir Physiol Neurobiol 2022;298:1-9; https://doi.org/10.1016/j.resp.2022.103846
  23. Negida A. Sample Size Calculation Guide - Part 7: How to Calculate the Sample Size Based on a Correlation. Adv J Emerg Med 2020;4(2): 1-2; doi: 10.22114/AJEM.V0I0.344
  24. Hidayat R, Wulandari P. Enzyme Linked Immunosorbent Assay (ELISA) Technique Guideline. Biosci Med J Biomed Transl Res 2021;5(5):447–453; https://doi.org/10.32539/bsm.v5i5.228
  25. de Oliveira-Júnior JF, Gois G, da Silva EB, et al. Non-parametric tests and multivariate analysis applied to reported dengue cases in Brazil. Environ Monit Assess 2019;191(7):1–19; https://doi.org/10.1007/s10661-019-7583-0
  26. Loxham M, Nieuwenhuijsen MJ. Health effects of particulate matter air pollution in underground railway systems- A critical review of the evidence. Part Fibre Toxicol 2019;16(1):1–24; https://doi.org/10.1186/s12989-019-0296-2
  27. Sesé L, Nunes H, Cottin V, et al. Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis. Thorax 2018;73(2):145–150; https://doi.org/10.1136/thoraxjnl-2017-209967
  28. Martinez FJ, Collard HR, Pardo A, et al. Idiopathic Pulmonary Fibrosis. Nat Rev Dis Prim 2017;3(1):1–19; https://doi.org/10.1038/nrdp.2017.74
  29. Leikauf GD, Kim SH, Jang AS. Mechanisms of Ultrafine Particle-Induced Respiratory Health Effects. Exp Mol Med 2020;52(3):329–337; https://doi.org/10.1038/s12276-020-0394-0
  30. Hasan H, Maranatha RA. Perubahan Fungsi Paru Pada Usia Tua. J Respirasi 2017;3(2):52–57; https://doi.org/10.20473/jr.v3-I.2.2017.52-57
  31. Qin CC, Liu YN, Hu Y, et al. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol 2017;23(17):3043–3052; https://doi.org/10.3748/wjg.v23.i17.3043
  32. Aziz N, Detels R, Quint JJ, et al. Biological variation of immunological blood biomarkers in healthy individuals and quality goals for biomarker tests. BMC Immunol 2019;20(1): 1-11; https://doi.org/10.1186/s12865-019-0313-0
  33. Dekoster K, Decaesteker T, Berghen N, et al. Longitudinal micro-computed tomography-derived biomarkers quantify non-resolving lung fibrosis in a silicosis mouse model. Sci Rep 2020;10(1):1-9; https://doi.org/10.1038/s41598-020-73056-6
  34. Thatcher TH, McHugh NA, Egan RW, et al. Role of CXCR2 in cigarette smoke-induced lung inflammation. Am J Physiol - Lung Cell Mol Physiol 2005;289(2 33-2): 322-8; https://doi.org/10.1152/ajplung.00039.2005
  35. Si S, Song S, Qin Y, et al. [Exposure of acute severe air pollution promotes inflammatory cell infiltration and increases the levels of proinflammatory cytokines and chemokines in lung tissues of rats]. Xi bao yu fen zi mian yi xue za zhi = Chinese J Cell Mol Immunol 2020;36(11): 977–982
  36. Imrich A, Ning YY, Lawrence J, et al. Alveolar macrophage cytokine response to air pollution particles: Oxidant mechanisms. Toxicol Appl Pharmacol 2007;218(3):256–264; https://doi.org/10.1016/j.taap.2006.11.033
  37. Li CH, Tsai ML, Chiou HY, et al. Role of Macrophages in Air Pollution Exposure Related Asthma. Int J Mol Sci 2022;23(20): 1-18; https://doi.org/10.3390/ijms232012337

Last update:

No citation recorded.

Last update: 2025-01-21 09:42:49

No citation recorded.