skip to main content

Model Prediksi Hubungan Polusi Udara Terhadap Kasus Covid-19 Di Kota Tangerang Tahun 2020-2022

Departemen Kesehatan Lingkungan, Fakultas Kesehatan Masyarakat, Universitas Indonesia, Depok, Jawa Barat, Indonesia

Open Access Copyright 2024 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Polusi udara dapat meningkatkan  kerentanan terhadap COVID-19. Pengendalian polusi udara serta pengendalian COVID-19 di Kota Tangerang belum dilaksanakan dengan maksimal. Tujuan dari penelitian ini adalah menentukan model prediksi hubungan polusi udara terhadap kasus COVID-19 Kota Tangerang Tahun 2020-2022.

Metode: Penelitian ini menggunakan desain studi ekologi tren waktu serta kualitatif. Penelitian ini dilaksanakan di Kota Tangerang pada bulan April- Juni 2023.  Penelitian ini menggunakan data sekunder meliputi data ISPU (NO2, SO2, PM10, dan PM2,5), suhu, kelembapan udara dan kasus COVID-19 di Kota Tangerang. Analisis data menggunakan analisis univariat, uji korelasi, uji regresi linier berganda.

Hasil: Gambaran NO2, SO2, PM10 tahun 2020-2022 berada dalam kategori baik, sedangkan PM2,5 adalah kategori sedang. Hasil uji korelasi spearman  menunjukkan SO2 (p= 0,001 ; r= -0,109) dan PM10 (p= 0,000 ; r= -0,210) berhubungan signifikan terhadap kasus konfirmasi COVID-19. Analisis multivariat menunjukkan polusi udara yang paling dominan mempengaruhi kasus COVID-19 di Kota Tangerang adalah PM10, setelah dikontrol dengan PM2,5, suhu dan kelembapan. Variabel PM10, PM2,5, suhu, dan kelembapan dapat menjelaskan variasi variabel kasus COVID-19 sebesar 17,7%.  .

Simpulan: Model prediksi hubungan polusi udara dengan kasus COVID-19 di Kota Tangerang Tahun 2020-2022 adalah kasus konfirmasi COVID-19 = 4384,38 + 22,47PM10 + 1,63PM2,5 - 120,39 suhu - 13,33 kelembapan.

 

ABSTRACT

Title: Prediction Model of the Association between Air Pollution and Covid-19 Cases in Tangerang City in 2020-2022

Background: Air pollution can increase vulnerability to COVID-19. Air pollution control and COVID-19 control in Tangerang City have not been implemented optimally. The purpose of this study is to determine the prediction model of the relationship between air pollution and COVID-19 cases in Tangerang City in 2020-2022.

Method: This research uses a time trend ecological study design and qualitative. This research was conducted in Tangerang City in April-June 2023.  This study used secondary data including ISPU data (NO2, SO2, PM10, and PM2,5), temperature, humidity and COVID-19 cases in Tangerang City. Data analysis used univariate analysis, correlation test, multiple linear regression test.

Result: The overview of NO2, SO2, PM10 in 2020-2022 is in the good category, while PM2,5 is in the moderate category. The results of the spearman correlation test showed that SO2 (p = 0.001; r = -0.109) and PM10 (p = 0.000; r = -0.210) were significantly associated with confirmed cases of COVID-19. Multivariate analysis shows that the most dominant air pollution affecting COVID-19 cases in Tangerang City is PM10, after controlling for PM2,5, temperature and humidity. PM10, PM2,5, temperature, and humidity variables can explain 17,7% of the variation in COVID-19 case variables. 

Conclusion: The prediction model of the relationship between air pollution and COVID-19 cases in Tangerang City in 2020-2022 is confirmed COVID-19 cases = 4384,38 + 22,47PM10 + 1.63PM2,5 - 120.39 temperature - 13.33 humidity.

Note: This article has supplementary file(s).

Fulltext View|Download |  Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (490KB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (268KB)    Indexing metadata
Keywords: COVID-19; PM2,5; PM10

Article Metrics:

  1. Pinho-Gomes AC, Roaf E, Fuller G, Fowler D, Lewis A, ApSimon H, et al. Air Pollution and Climate Change. Lancet Planet Heal [Internet]. 2023;7(9):727–8. https://doi.org/10.1016/S2542-5196(23)00189-4
  2. World Health Organization. Urban Health Initiative a Model Process for Catalysing Change: Solid Waste Management , Air Pollution and Health [Internet]. WHO Fact Sheet. 2021. p. 1–4. Available from: http://www.who.int/urbanhealthinitiative
  3. Dinas Lingkungan Hidup Kota Tangerang. Laporan Akhir Pemantauan Kualitas Udara dan Kebisingan Tahun Anggaran 2021. Kota Tangerang; 2021
  4. Kementrian Lingkungan Hidup dan kehutanan. Melalui ISPU, Masyarakat Dapat Mengetahui Kualitas Udara [Internet]. Siaran Pers Nomor: SP. 064/HUMAS/PP/HMS.3/3/2021. 2021. Available from: http://ppid.menlhk.go.id/berita/siaran-pers/5850/melalui-ispu-masyarakat-dapat-mengetahui-kualitas-udara
  5. Chaniago D, Zahara A, Ramadhani IS. Indeks Standar Pencemar Udara (Ispu) Sebagai Informasi Mutu Udara Ambien Di Indonesia [Internet]. 2020. Available from: https://ditppu.menlhk.go.id/portal/read/indeks-standar-pencemar-udara-ispu-sebagai-informasi-mutu-udara-ambien-di-indonesia
  6. Lestari P, Damayanti S, Arrohman MK. Emission Inventory of Pollutants (CO, SO2, PM2.5, and NOX) in Jakarta Indonesia. IOP Conf Ser Earth Environ Sci. 2020;489(1):1–7. https://doi.org/10.1088/1755-1315/489/1/012014
  7. Rani B, Singh U, Chuhan A, Sharma D, Maheshwari R. Photochemical Smog Pollution and Its Mitigation Measures. J Adv Sci Res. 2011;2(4):28–33
  8. Granieri D, Vita F, Inguaggiato S. Volcanogenic SO2, a Natural Pollutant: Measurements, Modeling and Hazard Assessment at Vulcano Island (Aeolian Archipelago, Italy). Environ Pollut [Internet]. 2017;231:219–28. Available from: https://doi.org/10.1016/j.envpol.2017.07.101
  9. Achmadi UF. Dasar-Dasar Penyakit Berbasis Lingkungan. 4th ed. Jakarta: Rajagrafindo Persada; 2011. 209 p
  10. Lu X, Zhang L, Chen Y, Zhou M, Zheng B, Li K, et al. Exploring 2016-2017 Surface Ozone Pollution Over China: Source Contributions and Meteorological Influences. Atmos Chem Phys. 2019;19(12):8339–61. https://doi.org/10.5194/acp-19-8339-2019
  11. Mukherjee A, Agrawal M. World Air Particulate Matter: Sources, Distribution And Health Effects. Environ Chem Lett. 2017;15(2):283–309. https://doi.org/10.1007/s10311-017-0611-9
  12. Rendana M, Komariah LN. The Relationship between Air Pollutants and COVID-19 Cases and Its Implications for Air Quality in Jakarta, Indonesia. J Nat Resour Environ Manag. 2021;11(1):93–100. https://doi.org/10.29244/jpsl.11.1.93-100
  13. World Health Organization. COVID-19 Weekly Epidemiological Update [Internet]. COVID-19 Weekly Epidemiological Update. 2023. Available from: https://www.who.int/publications/m/item/covid-19-weekly-epidemiological-update
  14. World Health Organization. COVID-19 Weekly Epidemiological Update. Vol. 25. 2022
  15. Dinas Kesehatan Provinsi Banten. Peta Sebaran Covid-19 Provinsi Banten [Internet]. 2023. Available from: https://infocorona.bantenprov.go.id/
  16. Ratnani RD. Teknik Pengendalian Pencemaran Udara yang Diakibatkan oleh Partikel. Momentum [Internet]. 2017;4(2):27–32. Available from: https://media.neliti.com/media/publications/114195-ID-none.pdf
  17. Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air Pollution and Organ Systems. Chest [Internet]. 2019;155(2):417–26. Available from: https://doi.org/10.1016/j.chest.2018.10.041
  18. Arty IS. Pendidikan Lingkungan Hidup Tentang Bahaya Polutan Udara. Cakrawala Pendidik. 2005;24(3):385–404
  19. Achmadi UF. Manajemen Penyakit Berbasis Wilayah. Depok: PT. RajaGrafindo Persada; 2014. 262 p
  20. Travaglio M, Yu Y, Popovic R, Selley L, Leal NS, Martins LM. Links Between Air Pollution And COVID-19 In England. Environ Pollut [Internet]. 2021;268:115859. Available from: https://doi.org/10.1016/j.envpol.2020.115859
  21. Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and Covid-19: The Role of Particulate Matter in The Spread and Increase of Covid-19’s Morbidity and Mortality. Int J Environ Res Public Health. 2020;17(12):1–22. https://doi.org/10.3390/ijerph17124487
  22. Frontera A, Cianfanelli L, Vlachos K, Landoni G, Cremona G. Severe Air Pollution Links to Higher Mortality in COVID-19 Patients: The “Double-Hit” Hypothesis. J Infect [Internet]. 2020;81(2):255–9. Available from: https://doi.org/10.1016/j.jinf.2020.05.031
  23. Xu L, Taylor JE, Kaiser J. Short-Term Air Pollution Exposure And COVID-19 Infection In The United States. Environ Pollut. 2022;292:118369. https://doi.org/10.1016/j.envpol.2021.118369
  24. Yao Y, Pan J, Liu Z, Meng X, Wang W, Kan H, et al. Ambient Nitrogen Dioxide Pollution And Spreadability Of COVID-19 In Chinese Cities. Ecotoxicol Environ Saf [Internet]. 2021;208:111421. Available from: https://doi.org/10.1016/j.ecoenv.2020.111421
  25. Dinas Kesehatan Kota Tangerang. Data Grafik Covid 19 2020-2021 Kota Tangerang. Kota Tangerang; 2021
  26. Cahyani I, Putro EW, Ridwanuloh AM, Wibowo S, Hariyatun H, Syahputra G, et al. Genome Profiling of SARS-CoV-2 in Indonesia, ASEAN and the Neighbouring East Asian Countries: Features, Challenges and Achievements. Viruses. 2022;14(4):1–18. https://doi.org/10.3390/v14040778
  27. Dinas Kesehatan Kota Tangerang. Data Grafik COVID-19 Tahun 2022. Kota Tangerang; 2022
  28. Dhama K, Nainu F, Frediansyah A, Chakraborty S, Zhou H, Raibul I. Global Emerging Omicron Variant of SARS-CoV-2: Impacts, Challenges and Strategies. J Infect Public Health. 2023;4–14. https://doi.org/10.1016/j.jiph.2022.11.024
  29. Susilo A, Olivia C, Jasirwan M, Wafa S, Maria S, Rajabto W, et al. Review of Current Literatures Mutasi dan Varian Coronavirus Disease 2019 ( COVID-19 ): Tinjauan Literatur Terkini. J Penyakit Dalam Indones. 2022;9(1):59–81. https://doi.org/10.7454/jpdi.v9i1.648
  30. Miller GT, Spoolman SE. Living in the Environment. 18th ed. Stamford, CT; 2015
  31. Wulandari A. Pencemaran Udara di Tangerang yang Kian Mengkhawatirkan [Internet]. 2021 [cited 2021 Jun 15]. Available from: https://www.kompasiana.com/aisyahwlndr/60bb21bbd541df22052c03d2/pencemaran-udara-di-tangerang-yang-kian-mengkhawatirkan
  32. Dinas Lingkungan Hidup Pemerintah Provinsi DKI Jakarta. Menuju Udara Bersih Jakarta [Internet]. Environment Agency of DKI Jakarta, Vital Strategies. Jakarta; 2020. Available from: https://www.vitalstrategies.org/wp-content/uploads/Menuju-Udara-Bersih-Jakarta.pdf
  33. Hastono SP. Analisis Data Pada Bidang Kesehatan. 1st ed. Depok: PT. RajaGrafindo Persada; 2020
  34. Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hirearchical Models. New York: Cambridge University Press; 2007. 607 p. https://doi.org/10.1017/CBO9780511790942
  35. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. 733 p
  36. Benoit K. Linear Regression Models with Logarithmic Transformations [Internet]. 2011. Available from: http://www.kenbenoit.net/courses/ME104/logmodels2.pdf
  37. Ogen Y. Assessing Nitrogen Dioxide (NO2) Levels as a Contributing Factor to Coronavirus (COVID-19) Fatality. Sci Total Environ [Internet]. 2020;726–730:138605. Available from: https://doi.org/10.1016/j.scitotenv.2020.138605
  38. Dales R, Blanco-Vidal C, Romero-Meza R, Schoen S, Lukina A, Cakmak S. The Association between Air Pollution and COVID-19 Related Mortality in Santiago, Chile: A Daily Time Series Analysis. Environ Res [Internet]. 2021;198:111284. Available from: https://doi.org/10.1016/j.envres.2021.111284
  39. Ranzani O, Alari A, Olmos S, Milà C, Rico A, Ballester J, et al. Long-Term Exposure to Air Pollution and Severe COVID-19 in Catalonia: A Population-Based Cohort Study. Nat Commun. 2023;14(1):2916–25. https://doi.org/10.1038/s41467-023-38469-7
  40. Sheridan C, Klompmaker J, Cummins S, James P, Fecht D, Roscoe C. Associations of Air Pollution with COVID-19 Positivity, Hospitalisations, and Mortality: Observational Evidence from UK Biobank. Environ Pollut [Internet]. 2022;308(June):119686. Available from: https://doi.org/10.1016/j.envpol.2022.119686
  41. Hoang T, Tran TTA. Ambient Air Pollution, Meteorology, and COVID-19 Infection in Korea. J Med Virol. 2021;93(2):878–85. https://doi.org/10.1002/jmv.26325
  42. Li H, Xu XL, Dai DW, Huang ZY, Ma Z, Guan YJ. Air pollution and Temperature are Associated with Increased COVID-19 Incidence: A Time Series Study. Int J Infect Dis. 2020;97:278–82. https://doi.org/10.1016/j.ijid.2020.05.076
  43. Chattopadhyay A, Shaw S. Association Between Air Pollution and COVID-19 Pandemic: An Investigation in Mumbai, India. GeoHealth. 2021;5(7):1–16. https://doi.org/10.1029/2021GH000383
  44. Chaitanya P, Upadhyay E, Kulkarni A, Raju PVS. Effect of Association of Temperature and Pollutant Levels on COVID-19 Spread Over Jaipur. Vegetos [Internet]. 2022;36(1):133–40. Available from: https://doi.org/10.1007/s42535-022-00500-5
  45. Cao Y, Chen M, Dong D, Xie S, Liu M. Environmental Pollutants Damage Airway Epithelial Cell Cilia: Implications for The Prevention of Obstructive Lung Diseases. Thorac Cancer. 2020;11(3):505–10. https://doi.org/10.1111/1759-7714.13323
  46. Christina Adebayo-Ojo T, Wichmann J, Olalekan Arowosegbe O, Probst-Hensch N, Schindler C, Künzli N. Short-Term Effects of PM10, NO2, SO2 and O3 on Cardio-Respiratory Mortality in Cape Town, South Africa, 2006–2015. Int J Environ Res Public Health. 2022;20(2):8078–98. https://doi.org/10.3390/ijerph19138078
  47. Ogunjo S, Olaniyan O, Olusegun CF, Kayode F, Okoh D, Jenkins G. The Role of Meteorological Variables and Aerosols in the Transmission of COVID-19 During Harmattan Season. GeoHealth. 2022;6(2). https://doi.org/10.1029/2021GH000521
  48. Hutter HP, Poteser M, Moshammer H, Lemmerer K, Mayer M, Weitensfelder L, et al. Air pollution is Associated with COVID-19 Incidence and Mortality in Vienna, Austria. Int J Environ Res Public Health. 2020;17(24):1–11. https://doi.org/10.3390/ijerph17249275
  49. Prinz AL, Richter DJ. Long-Term Exposure To Fine Particulate Matter Air Pollution: An Ecological Study Of Its Effect On COVID-19 Cases And Fatality In Germany. Environ Res. 2022;204:111948–58. https://doi.org/10.1016/j.envres.2021.111948
  50. Scapini V, Torres S, Rubilar-Torrealba R. Meteorological, PM2.5 and PM10 factors on SARS-COV-2 transmission: The case of southern regions in Chile. Environ Pollut [Internet]. 2023;322:120961–6. Available from: https://doi.org/10.1016/j.envpol.2022.120961
  51. Anderson EL, Turnham P, Griffin JR, Clarke CC. Consideration of the Aerosol Transmission for COVID-19 and Public Health. Risk Anal. 2020;40(5):902–7. https://doi.org/10.1111/risa.13500
  52. Alghamdi MA, Shamy M, Redal MA, Khoder M, Awad AH, Elserougy S. Microorganisms Associated Particulate Matter: A Preliminary Study. Sci Total Environ [Internet]. 2014;479–480(1):109–16. Available from: https://doi.org/10.1016/j.scitotenv.2014.02.006
  53. Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G. A Review on Airborne Microorganisms in Particulate Matters: Composition, Characteristics and Influence Factors. Environ Int. 2018;113:74–90. https://doi.org/10.1016/j.envint.2018.01.007
  54. Weaver AK, Head JR, Gould CF, Carlton EJ, Remais J V. Environmental Factors Influencing COVID-19 Incidence and Severity. Annu Rev Public Health. 2022;43:271–91. https://doi.org/10.1146/annurev-publhealth-052120-101420
  55. Magazzino C, Mele M, Schneider N. The Relationship Between Air Pollution and COVID-19-Related Deaths: An Application to Three French cities. Appl Energy [Internet]. 2020;279:115835–54. Available from: https://doi.org/10.1016/j.apenergy.2020.115835
  56. Hoskovec L, Martenies S, Burket TL, Magzamen S, Wilson A. Association Between Air Pollution and COVID-19 Disease Severity Via Bayesian Multinomial Logistic Regression with Partially Missing Outcomes. Environmetrics. 2022;33(7):1–18. https://doi.org/10.1002/env.2751
  57. Rachmadina F, Ahmad RA, Ramadona AL. Hubungan Partikulat (PM2,5) Terhadap Infeksi dan Kematian COVID-19 di Asia: Systematic Review dan Meta-Analysis. Universitas Gajah Mada; 2022
  58. Asif Z, Chen Z, Stranges S, Zhao X, Sadiq R, Olea-Popelka F, et al. Dynamics of SARS-CoV-2 Spreading Under The Influence of Environmental Factors and Strategies to Tackle the Pandemic: A Systematic Review. Sustain Cities Soc [Internet]. 2022;81(March 2022):103840–57. Available from: https://doi.org/10.1016/j.scs.2022.103840
  59. Yu Z, Ekström S, Bellander T, Ljungman P, Pershagen G, Eneroth K, et al. Ambient Air Pollution Exposure Linked to Long COVID Among Young Adults: a Nested Survey in a Population-Based Cohort in Sweden. Lancet Reg Heal - Eur. 2023;28:100608–18. https://doi.org/10.1016/j.lanepe.2023.100608
  60. Haque SE, Rahman M. Association Between Temperature, Humidity, and COVID-19 Outbreaks in Bangladesh. Environ Sci Policy [Internet]. 2020;114:253–5. Available from: https://doi.org/10.1016/j.envsci.2020.08.012
  61. Zhou B, Kojima S, Kawamoto A, Fukushima M. COVID-19 Pathogenesis, Prognostic Factors, and Treatment Strategy: Urgent Recommendations. J Med Virol [Internet]. 2021;93(5):2694–704. Available from: https://doi.org/10.1002/jmv.26754
  62. Iqbal MM, Abid I, Hussain S, Shahzad N. The Effects of Regional Climatic Condition on the Spread of COVID-19 at Global Scale. Sci Total Environ. 2020;739:140101–10. https://doi.org/10.1016/j.scitotenv.2020.140101
  63. Choi Y, Tuel A, Eltahir EAB. On the Environmental Determinants of COVID‐19 Seasonality. GeoHealth. 2021;5(6):1–10. https://doi.org/10.1029/2021GH000413
  64. Muhaniroh M, Syech R. Analisis Pengaruh Suhu Udara, Curah Hujan, Kelembaban Udara Dan Kecepatan Angin Terhadap Arah Penyebaran Dan Akumulasi Particulate Matter (PM10): Studi Kasus Kota Pekanbaru. Komun Fis Indones. 2021;18(1):48–57. https://doi.org/10.31258/jkfi.18.1.48-57
  65. Wallace J, Kanaroglou P. The Effect of Temperature Inversions on Ground-Level Nitrogen Dioxide (NO2) and Fine Particulate Matter (PM2.5) using Temperature Profiles from the Atmospheric Infrared Sounder (AIRS). Sci Total Environ [Internet]. 2009;407(18):5085–95. Available from: https://doi.org/10.1016/j.scitotenv.2009.05.050
  66. Nuryanto, Gultom HM, Melinda S. Pengaruh Angin Permukaan dan Kelembapan Udara terhadap Suspended Particulate Matter (SPM) di Sorong Periode Januari –Juli 2019. Bul GAW Bariri [Internet]. 2021;2(2):71–8. Available from: https://doi.org/10.31172/bgb.v2i2.51%0A
  67. Sari I, Fatkhurrahman, Andriani. Pola Sebaran Polutan PM2,5 dan PM10 Harian terhadap Faktor Suhu dan Kelembaban. 2019;82:95–100
  68. Zahrani CI, Pramana S. Analisis Perkembangan Kasus COVID-19 Berkaitan dengan Kebijakan Pemerintah di Pulau Jawa. Indones Heal Inf Manag J. 2021;9(1):1–12. https://doi.org/10.47007/inohim.v9i1.224
  69. Ali AM, Tofiq AM, Rostam HM, Ali KM, Tawfeeq HM. Disease Severity and Efficacy of Homologous Vaccination among Patients Infected with SARS-CoV-2 Delta or Omicron VOCs, Compared to Unvaccinated Using Main Biomarkers. J Med Virol. 2022;94(12):5867–76. https://doi.org/10.1002/jmv.28098
  70. Lupu D, Tiganasu R. COVID-19 Vaccination and Governance In The Case of Low, Middle and High-Income Countries. BMC Public Health [Internet]. 2023;23(1):1073–95. Available from: https://doi.org/10.1186/s12889-023-15975-3
  71. Dinas Kesehatan Kota Tangerang. Cakupan Vaksinasi COVID-19 di Kota Tangerang per 31 Desember 2022. Kota Tangerang; 2022
  72. Giwangkancana G, Pradian E, Indriasari, Handayani SD. Lunar New Year and Ied Fitri: The Circle of COVID-19. IJID Reg [Internet]. 2022;7(38):127–9. Available from: https://doi.org/10.1016/j.ijregi.2022.09.006
  73. Beloconi A, Vounatsou P. Long-term Air Pollution Exposure and COVID-19 Case-severity: An Analysis of Individual-level Data from Switzerland. Environ Res [Internet]. 2023;216(P1):114481–91. Available from: https://doi.org/10.1016/j.envres.2022.114481
  74. Hunt SW, Winner DA, Wesson K, Kelly JT. Furthering a partnership: Air quality modeling and improving public health. J Air Waste Manag Assoc. 2021;71(6):682–8. https://doi.org/10.1080/10962247.2021.1876180

Last update:

No citation recorded.

Last update: 2024-09-20 14:50:09

No citation recorded.