skip to main content

Evaluating Environmental and Public Health Risks of Medical Waste Incineration Using Air Dispersion Modeling in Indonesia

1Magister of Science in Sustainability, Universitas Pertamina, Indonesia

2Department of Environmental Engineering, Universitas Bhayangkara Jakarta Raya, Indonesia

3Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur, Malaysia

Open Access Copyright 2025 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Pengembangan fasilitas pengolahan limbah medis tetap menjadi persoalan utama, terutama di wilayah yang memiliki infrastruktur yang belum memadai. Sebagai tanggapan atas masalah ini, pemerintah Indonesia telah merancang pembangunan insinerator limbah medis yang ditujukan untuk meningkatkan sistem penanganan limbah di dalam negeri. Meskipun proyek ini menjanjikan peningkatan dalam pengelolaan limbah, implikasi lingkungan dari insinerator perlu diperhatikan, khususnya yang berkaitan dengan penurunan kualitas udara ambien.

Metode: Penelitian ini menggunakan pendekatan pemodelan dispersi udara Gaussian untuk menganalisis pola penyebaran dan besarnya konsentrasi polutan udara yang dihasilkan dari spesifikasi insinerator limbah medis yang diusulkan. Investigasi difokuskan pada area pemukiman yang ada di dekatnya, berjarak 100 meter dari lokasi instalasi cerobong insinerator yang diusulkan, guna mempelajari dampak langsung terhadap populasi sekitar. Penelitian ini mensimulasikan dua skenario stabilitas atmosfer: 'sangat tidak stabil' (A) dan 'tidak stabil' (B) berdasarkan kondisi meteorologi tahunan di lokasi.

Hasil:  Hasil penelitian menunjukkan bahwa lima parameter kualitas udara ambien utama—nitrogen dioksida (NO₂), sulfur dioksida (SO₂), karbon monoksida (CO), partikel tersuspensi total (TSP), dan timbal (Pb)—masih memenuhi Baku Mutu Udara Ambien Nasional (BMUAN) Indonesia dalam kedua skenario stabilitas atmosfer yang disimulasikan. Meskipun konsentrasi Pb dan NO₂ masih berada dalam batas yang diperkenankan BMUAN yaitu 2 µg/m³ untuk Pb dan 200 µg/m³ untuk NO₂, nilainya mendekati ambang batas regulasi. Dalam skenario terburuk, konsentrasi maksimum yang tercatat adalah 1,459 µg/m³ untuk Pb (72,95% dari batas BMUAN) dan 128,840 µg/m³ untuk NO₂ (64,42% dari batas BMUAN), temuan ini menegaskan pentingnya pemantauan kualitas udara secara berkala untuk memitigasi potensi risiko lingkungan.

Simpulan:  Meskipun kelima parameter kualitas udara yang dianalisis masih berada dalam batas BMUAN, pemantauan berkala tetap diperlukan karena konsentrasi Pb dan NO₂ mendekati ambang batas regulasi. Studi ini menyoroti pentingnya strategi mitigasi, termasuk pemantauan kualitas udara jangka pendek dan panjang serta biomonitoring bagi populasi berisiko, untuk mengantisipasi dampak kesehatan akibat paparan kumulatif. Selain itu, hasil penelitian ini menunjukkan bahwa evaluasi dampak polutan berdasarkan variasi musiman dan kondisi cuaca ekstrem perlu dipertimbangkan dalam model dispersi udara guna meningkatkan akurasi prediksi. Penguatan regulasi emisi insinerator dalam Peraturan Pemerintah RI No. 22/2021, serta eksplorasi teknologi alternatif pengolahan limbah medis, seperti autoclaving dan pyrolysis, direkomendasikan untuk mendukung praktik pengelolaan lingkungan yang lebih berkelanjutan.

 

ABSTRACT

Background: The development of medical waste processing facilities remains a major issue, especially in areas with inadequate infrastructure. In response to this issue, the Indonesian government has initiated plans for a medical waste incinerator aimed at improving waste management practices in the country. While the project promises improvements in waste management, the environmental implications of the incinerator need to be addressed, particularly in relation to ambient air quality degradation.

Method: This study employs a Gaussian air dispersion modeling approach to analyze the dispersion patterns and magnitude of air pollutant concentrations emanating from the proposed medical waste incinerator specifications. Our investigation is focused on a nearby existing residential area located 100 meters from the proposed incinerator stack installation to study the immediate impact on nearby population. The study simulated two atmospheric stability scenarios: 'very unstable' (A) and 'unstable' (B) based on annual meteorological condition at site.

Result:  The study revealed that concentrations of five key ambient air quality parameters—nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO), total suspended particulate (TSP), and lead (Pb)— comply with Indonesia's National Ambient Air Quality Standards (INAQS) under both tested atmospheric stability scenarios. Although the concentrations of Pb and NO₂ remain within the permissible limits set by INAQS, which are 2 µg/m³ for Pb and 200 µg/m³ for NO₂, their values are approaching the regulatory thresholds. Under the worst-case scenario, the maximum concentrations recorded were 1.459 µg/m³ for Pb (72.95% of the INAQS limit) and 128.840 µg/m³ for NO₂ (64.42% of the INAQS limit), these findings highlight the need for continuous air quality monitoring to mitigate potential environmental risks.

Conclusion:  Although the five analyzed ambient air quality parameters remain within the INAQS limits, regular monitoring is still required as Pb and NO₂ concentrations are approaching regulatory thresholds. This study highlights the importance of mitigation strategies, including short- and long-term air quality monitoring and biomonitoring for at-risk populations, to anticipate the health impacts of cumulative exposure. Furthermore, the findings indicate that the evaluation of pollutant impacts based on seasonal variations and extreme weather conditions should be incorporated into air dispersion models to enhance predictive accuracy. Strengthening emission regulations for incinerators under Government Regulation No. 22/2021, along with exploring alternative medical waste treatment technologies, such as autoclaving and pyrolysis, is recommended to support more sustainable environmental management practices.

 

Note: This article has supplementary file(s).

Fulltext View|Download |  Turnitin
Turnitin
Subject
Type Turnitin
  Download (3MB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (1MB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (72KB)    Indexing metadata
Keywords: Medical Waste; Incinerator; Air Quality; Air Dispersion Modeling; Gaussian Equation

Article Metrics:

  1. Kojima M, Iwasaki F, Johannes HP, Edita EP. Strengthening Waste Management Policies to Mitigate the COVID-19 Pandemic. In 2020 [cited 2025 Mar 26]. Available from: https://www.eria.org/uploads/media/policy-brief/Strengthening-Waste-Management-Policies-to-Mitigate-the-COVID19-Pandemic-.pdf
  2. Ministry of Health R of Indonesia. FASILITAS KESEHATAN [Internet]. 2023 [cited 2025 Mar 26]. Available from: https://kemkes.go.id/id/layanan/fasilitas-kesehatan
  3. Simbolon TG. (Laporan) Kumpulan Data Fasilitas Kesehatan di Indonesia 5 Tahun Terakhir hingga 2023 [Internet]. Data Indonesia: Data Indonesia for Better Decision. Valid, Accurate, Relevant. 2024 [cited 2025 Mar 26]. Available from: https://dataindonesia.id/kesehatan/detail/laporan-kumpulan-data-fasilitas-kesehatan-di-indonesia-5-tahun-terakhir-hingga-2023
  4. Tseng ML, Ardaniah V, Bui TD, Tseng (Aaron) JW, Lim MK, Ali MH. Sustainable waste management in the Indonesian medical and health-care industry: technological performance on environmental impacts and occupational safety. Management of Environmental Quality: An International Journal. 2021 Dec 10;33(2):549–69. https://doi.org/10.1108/MEQ-07-2021-0160
  5. Andeobu L, Wibowo S, Grandhi S. Medical Waste from COVID-19 Pandemic-A Systematic Review of Management and Environmental Impacts in Australia. Int J Environ Res Public Health. 2022 Jan 26;19(3):1381. https://doi.org/10.3390/ijerph19031381
  6. Cai X, Du C. Thermal Plasma Treatment of Medical Waste. Plasma Chem Plasma Process. 2021 Jan 1;41(1):1–46. https://doi.org/10.1007/s11090-020-10119-6
  7. Tovkach AE, Boyle JC, Nagelli EA, James CM, Sheehan PL, Pfluger AR. Structured decision making for assessment of solid waste-to-energy systems for decentralized onsite applications. Environ Syst Decis. 2023 Mar 1;43(1):54–71. https://doi.org/10.1007/s10669-022-09885-9
  8. Chaudhary P, Singh R, Shabin M, Sharma A, Bhatt S, Sinha V, et al. Replacing the greater evil: Can legalizing decentralized waste burning in improved devices reduce waste burning emissions for improved air quality? Environ Pollut. 2022 Oct 15;311:119897. https://doi.org/10.1016/j.envpol.2022.119897
  9. Forbid GT, Ghogomu JN, Busch G, Frey R. Open waste burning in Cameroonian cities: an environmental impact analysis. Environmentalist. 2011 Sep 1;31(3):254–62. https://doi.org/10.1007/s10669-011-9330-0
  10. Jouhara H, Czajczyńska D, Ghazal H, Krzyżyńska R, Anguilano L, Reynolds AJ, et al. Municipal waste management systems for domestic use. Energy. 2017 Nov 15;139:485–506. https://doi.org/10.1016/j.energy.2017.07.162
  11. Sitompul PPE. Menilik kebijakan pengolahan limbah B3 fasilitas pelayanan kesehatan selama pandemi COVID-19 di Provinsi Jawa Barat. Dinamika Lingkungan Indonesia. 2021;8(1):73–9. https://doi.org/10.31258/dli.8.1.p.73-79
  12. Yuliani M. Incineration for municipal solid waste treatment. J Rekayasa Lingkungan. 2016;9(2) :89–96. https://doi.org/10.29122/jrl.v9i2.1997
  13. GR RI No.22/2021. Peraturan Pemerintah RI Nomor 22 Tahun 2021 Tentang Penyelenggaraan Perlindungan Dan Pegelolaan Lingkungan Hidup (The Republic of Indonesia Government Regulation Number 22 of 2021 concerning the Implementation of Environmental Protection and Management). Kementrerian Sekretariat Negara Republik Indonesia; 2021
  14. BMKG. Data online - Pusat Database [Internet]. BMKG - Badan Meteorologi, Klimatologi, dan Geofisika. 2023 [cited 2025 Mar 26]. Available from: https://www.bmkg.go.id/profil/stasiun-upt.bmkg?id=166
  15. Prasad VK, Badarinath KVS, Tsuruta H, Sudo S, Yonemura S, Cardina J, et al. Implications of Land Use Changes on Carbon Dynamics and Sequestration—Evaluation from Forestry Datasets, India. The Environmentalist. 2003 Jun 1;23(2):175–87. https://doi.org/10.1023/A:1024841217199
  16. Sütçü M. Parameter uncertainties in evaluating climate policies with dynamic integrated climate-economy model. Environ Syst Decis. 2024 Mar 1;44(1):69–84. https://doi.org/10.1007/s10669-023-09914-1
  17. Khoo HH, Spedding TA, Houston D, Taplin D. Application of modeling and simulation tools in costs and pollution monitoring. The Environmentalist. 2001 Jun 1;21(2):161–8. https://doi.org/10.1023/A:1010640613755
  18. Foszcz D, Niedoba T, Siewior J. Models of Air Pollution Propagation in the Selected Region of Katowice. Atmosphere. 2021 Jun;12(6):695. https://doi.org/10.3390/atmos12060695
  19. Capgras J, Barhebwa Mushamuka F, Feuilleaubois L. Optimisation of selection and placement of nature-based solutions for climate adaptation: a literature review on the modelling and resolution approaches. Environ Syst Decis. 2023 Dec 1;43(4):577–98. https://doi.org/10.1007/s10669-023-09933-y
  20. Palmer JF. The contribution of a GIS-based landscape assessment model to a scientifically rigorous approach to visual impact assessment. Landscape and Urban Planning. 2019 Sep 1;189:80–90. https://doi.org/10.1016/j.landurbplan.2019.03.005
  21. Yalcinkaya S. A spatial modeling approach for siting, sizing and economic assessment of centralized biogas plants in organic waste management. Journal of Cleaner Production. 2020 May 10;255:120040. https://doi.org/10.1016/j.jclepro.2020.120040
  22. Zhao J, Guo H, Han M, Tang H, Li X. Gaussian Process Regression for Prediction of Sulfate Content in Lakes of China. Journal of Engineering and Technological Sciences. 2019 Apr 30;51(2):198–215. https://doi.org/10.5614/j.eng.technol.sci.2019.51.2.4
  23. Tian S, Liang T, Li K. Fine road dust contamination in a mining area presents a likely air pollution hotspot and threat to human health. Environment International. 2019 Jul 1;128:201–9. https://doi.org/10.1016/j.envint.2019.04.050
  24. Tang J, McNabola A, Misstear B. The potential impacts of different traffic management strategies on air pollution and public health for a more sustainable city: A modelling case study from Dublin, Ireland. Sustainable Cities and Society. 2020 Sep 1;60:102229. https://doi.org/10.1016/j.scs.2020.102229
  25. Lumina Decision Systems. Analytica Visionary Modeling [Internet]. 2024 [cited 2024 Feb 4]. Available from: https://lumina.com/
  26. Lakes Environmental Software. WRPLOT View Wind and Rain Rose Plots for Meteorological Data WRPLOT View TM [Internet]. 2023 [cited 2023 Aug 8]. Available from: www.webLakes.com
  27. Environmental Systems Research Institute (Esri). Arc Geographic Information System (ArcGIS) [Internet]. 2023 [cited 2023 Aug 8]. Available from: https://www.esri.com/en-us/arcgis/about-arcgis/overview
  28. Google. Google Earth Pro [Internet]. 2023 [cited 2023 Aug 8]. Available from: https://www.google.com/earth/versions/
  29. Weiner R, Matthews R. Environmental Engineering, Fourth Edition. New York: Elsevier Science; 2003.484 p
  30. Cooper CD, Alley FC. Air Pollution Control: A Design Approach, Fourth Edition. Waveland Press; 2010. 857 p
  31. BMKG. Peralatan Meteorologi (Meteorological Equipment) [Internet]. 2022 [cited 2022 Feb 6]. Available from: https://bmkgkotim.info/peralatanmeteo/
  32. McMullen RW. The Change of Concentration Standard Deviations with Distance. Journal of the Air Pollution Control Association. 1975 Oct;25(10):1057–8. https://doi.org/10.1080/00022470.1975.10470179
  33. Johansson L, Karppinen A, Kurppa M, Kousa A, Niemi JV, Kukkonen J. An operational urban air quality model ENFUSER, based on dispersion modelling and data assimilation. Environmental Modelling & Software. 2022 Oct 1;156:105460. https://doi.org/10.1016/j.envsoft.2022.105460
  34. Sterman J. Business Dynamics, System Thinking and Modeling for a Complex World. Boston: McGraw-Hill Higher Education; 2000. 982 p
  35. Indonesia Deputi Bidang Tata Deputi Bidang TataLingkungan. Memprakirakan dampak lingkungan: kualitas udara. Jakarta: Deputi Bidang Tata Lingkungan, Kementerian Negara Lingkungan Hidup; 2007. 71 p
  36. United States Environmental Protection Agency (USEPA) O. Basic Information about Lead Air Pollution [Internet]. 2024 [cited 2023 Aug 13]. Available from: https://www.epa.gov/lead-air-pollution/basic-information-about-lead-air-pollution#health
  37. United States Environmental Protection Agency (USEPA) O. Basic Information about NO2 [Internet]. 2016 [cited 2023 Aug 13]. Available from: https://www.epa.gov/no2-pollution/basic-information-about-no2#What is NO2

Last update:

No citation recorded.

Last update: 2025-08-09 23:08:41

No citation recorded.