1Department of Informatics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
2Faculty of Computing and Informatics, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia, Malaysia
BibTex Citation Data :
@article{JMASIF71622, author = {Zidan Rafindra Utomo and Prajanto Wahyu Adi and Priyo Sasongko and Gohar Rahman}, title = {Development and Optimization of a Construction Personal Protective Equipment (PPE) Detection Model on YOLOv8 Architecture}, journal = {Jurnal Masyarakat Informatika}, volume = {16}, number = {1}, year = {2025}, keywords = {Workplace Safety; Object Detection; Hyperparameter Tuning; PPE Detection; Data Augmentation}, abstract = { Workplace safety in the construction sector remains a critical issue due to frequent accidents caused by non-compliance with Personal Protective Equipment (PPE) regulations. Manual supervision is inefficient and prone to errors, necessitating an automated detection approach. The prior YOLOv5 version trained on the Construction Safety dataset from Roboflow-100, achieves a mean Average Precision (mAP@0.50) of 0.867. However, class imbalance, particularly the underrepresentation of \"no-helmet\" and \"no-vest\" categories, limited detection performance. This study improves the model by tuning hyperparameters for optimal training using grid search and applying data augmentation techniques to address dataset imbalance. Mosaic and Mixup augmentation technique is applied on the dataset. The augmented dataset is used to retrain YOLOv8, further optimizing detection accuracy. Results indicate an improved mAP@0.50 of 0.921, demonstrating enhanced performance in PPE violation detection. These refinements aim to strengthen workplace safety enforcement through more accurate and balanced PPE detection. }, issn = {2777-0648}, pages = {1--14} doi = {10.14710/jmasif.16.1.71622}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/71622} }
Refworks Citation Data :
Workplace safety in the construction sector remains a critical issue due to frequent accidents caused by non-compliance with Personal Protective Equipment (PPE) regulations. Manual supervision is inefficient and prone to errors, necessitating an automated detection approach. The prior YOLOv5 version trained on the Construction Safety dataset from Roboflow-100, achieves a mean Average Precision (mAP@0.50) of 0.867. However, class imbalance, particularly the underrepresentation of "no-helmet" and "no-vest" categories, limited detection performance. This study improves the model by tuning hyperparameters for optimal training using grid search and applying data augmentation techniques to address dataset imbalance. Mosaic and Mixup augmentation technique is applied on the dataset. The augmented dataset is used to retrain YOLOv8, further optimizing detection accuracy. Results indicate an improved mAP@0.50 of 0.921, demonstrating enhanced performance in PPE violation detection. These refinements aim to strengthen workplace safety enforcement through more accurate and balanced PPE detection.
Article Metrics:
Last update:
Last update: 2025-05-28 20:17:08
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.