skip to main content

Development and Optimization of a Construction Personal Protective Equipment (PPE) Detection Model on YOLOv8 Architecture

1Department of Informatics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

2Faculty of Computing and Informatics, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia, Malaysia

Received: 11 Mar 2025; Revised: 21 Apr 2025; Accepted: 28 Apr 2025; Available online: 26 May 2025; Published: 31 May 2025.
Editor(s): Kabul Kurniawan
Open Access Copyright (c) 2025 The authors. Published by Department of Informatics Universitas, Diponegoro
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Workplace safety in the construction sector remains a critical issue due to frequent accidents caused by non-compliance with Personal Protective Equipment (PPE) regulations. Manual supervision is inefficient and prone to errors, necessitating an automated detection approach. The prior YOLOv5 version trained on the Construction Safety dataset from Roboflow-100, achieves a mean Average Precision (mAP@0.50) of 0.867. However, class imbalance, particularly the underrepresentation of "no-helmet" and "no-vest" categories, limited detection performance. This study improves the model by tuning hyperparameters for optimal training using grid search and applying data augmentation techniques to address dataset imbalance. Mosaic and Mixup augmentation technique is applied on the dataset. The augmented dataset is used to retrain YOLOv8, further optimizing detection accuracy. Results indicate an improved mAP@0.50 of 0.921, demonstrating enhanced performance in PPE violation detection. These refinements aim to strengthen workplace safety enforcement through more accurate and balanced PPE detection.

Fulltext View|Download
Keywords: Workplace Safety; Object Detection; Hyperparameter Tuning; PPE Detection; Data Augmentation

Article Metrics:

  1. Y. Adiratna et al., Profil Keselamatan dan Kesehatan Kerja Nasional Indonesia Tahun 2022. Kementrian Ketenagakerjaan Republik Indonesia, 2022. Accessed: Sep. 05, 2024. [Online]. Available: https://satudata.kemnaker.go.id/publikasi/75
  2. W. S. Alaloul, S. Ammad, and S. Saad, “Health and Safety for Infrastructure Projects: PPE Adaptation and Barriers,” in 2020 2nd International Sustainability and Resilience Conference: Technology and Innovation in Building Designs, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/IEEECONF51154.2020.9319985
  3. R. Ab Rahman, “Managing Safety at Work Issues in Construction Works in Malaysia: A Proposal for Legislative Reform,” Mod Appl Sci, vol. 9, no. 13, p. 108, Nov. 2015, doi: 10.5539/mas.v9n13p108
  4. A. K. Qisti, “Hubungan Tingkat Pengetahuan dan Sikap dengan Pemakaian Alat Pelindung Diri (APD) Pekerja di Pabrik PTPN7 Kabupaten Seluma,” Jurnal Sanitasi Profesional Indonesia, vol. 2, no. 1, 2021, doi: 10.33088/jspi.v2i1.200
  5. L. Ezzeddini et al., “Analysis of the Performance of Faster R-CNN and YOLOv8 in Detecting Fishing Vessels and Fishes in Real Time,” PeerJ Comput Sci, vol. 10, 2024, doi: 10.7717/PEERJ-CS.2033
  6. A. Barlybayev et al., “Personal Protective Equipment Detection Using YOLOv8 Architecture on Object Detection Benchmark Datasets: A Comparative Study,” Cogent Eng, vol. 11, no. 1, 2024, doi: 10.1080/23311916.2024.2333209
  7. M. Çiftçi, M. U. Türkdamar, and C. Öztürk, “Leveraging YOLO Models for Safety Equipment Detection on Construction Sites,” Journal of Computing Theories and Applications, vol. 1, no. 4, pp. 492–506, May 2024, doi: 10.62411/jcta.10453
  8. Ł. Popek, R. Perz, G. Galiński, and A. Abratański, “Optimization of Animal Detection in Thermal Images Using YOLO Architecture,” International Journal of Electronics and Telecommunications, vol. 69, no. 4, pp. 825–831, 2023, doi: 10.24425/ijet.2023.147707
  9. M. I. B. Ahmed et al., “Personal Protective Equipment Detection: A Deep-Learning-Based Sustainable Approach,” Sustainability (Switzerland), vol. 15, no. 18, Sep. 2023, doi: 10.3390/su151813990
  10. T. Mahendrakar et al., “Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation around Non-Cooperative Targets,” in 2022 IEEE Aerospace Conference, IEEE, 2022, p. 4265. doi: 10.1109/AERO53065.2022.9843537
  11. P. Probst and B. Bischl, “Tunability: Importance of Hyperparameters of Machine Learning Algorithms,” Journal of Machine Learning Research, vol. 20, pp. 1–32, 2019, doi: 10.48550/arXiv.1802.09596
  12. R. Escobar Díaz Guerrero, L. Carvalho, T. Bocklitz, J. Popp, and J. L. Oliveira, “A Data Augmentation Methodology to Reduce the Class Imbalance in Histopathology Images,” Journal of Imaging Informatics in Medicine, vol. 37, no. 4, pp. 1767–1782, Mar. 2024, doi: 10.1007/s10278-024-01018-9
  13. N. Crasto, “Class Imbalance in Object Detection: An Experimental Diagnosis and Study of Mitigation Strategies,” Mar. 2024, doi: 10.48550/arXiv.2403.07113
  14. R. Padilla, S. L. Netto, E. A. B. Da Silva, and S. L. Netto, “A Survey On Performance Metrics For Object-Detection Algorithms,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), 2020. doi: 10.1109/IWSSIP48289.2020
  15. F. Ciaglia, F. S. Zuppichini, P. Guerrie, M. McQuade, and J. Solawetz, “Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark,” arXiv preprint arXiv:2211.13523, Nov. 2022, doi: 10.48550/arXiv.2211.13523
  16. I. T. Young, J. J. Gerbrands, and L. J. Van, Fundamentals of Image Processing. Delft University of Technology, 1995
  17. W. Zeng, “Image data augmentation techniques based on deep learning: A survey,” 2024, American Institute of Mathematical Sciences. doi: 10.3934/mbe.2024272
  18. R. Marco, S. S. S. Ahmad, and S. Ahmad, “An Improving Long Short Term Memory-Grid Search Based Deep Learning Neural Network for Software Effort Estimation,” International Journal of Intelligent Engineering and Systems, vol. 16, no. 4, pp. 164–180, 2023, doi: 10.22266/ijies2023.0831.14

Last update:

No citation recorded.

Last update: 2025-05-28 20:17:08

No citation recorded.