skip to main content

Techno-economic Study of Recycled Plastic Waste Boards (RPB) as Sustainable Shell Construction Material for Fishing Vessels in Indonesia

*Heri Supomo  -  Department of Naval Architecture and Shipbuilding Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Indonesia
Imam Baihaqi  -  Department of Naval Architecture and Shipbuilding Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Indonesia
Abdul Rahman Safaruddin  -  Department of Naval Architecture and Shipbuilding Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember, Indonesia
Wikaranosa Supomo  -  Baito Deling Research, Institut Teknologi Sepuluh Nopember, Indonesia
Received: 15 Oct 2024; Revised: 5 May 2024; Accepted: 5 May 2024; Available online: 5 May 2024; Published: 30 Jun 2025.
Open Access Copyright (c) 2025 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The extreme increase in plastic waste over the past few decades has significantly impacted environmental challenges, especially in marine ecosystems. Despite numerous attempts, the use of recycled plastic waste remains restricted to specific applications. This paper experimentally investigates the potential of using Recycled Plastic-Waste Boards (RPB) as a shell hull construction material for fishing vessels in Indonesia. The study technically investigated the performance of RPB works compared to regular materials like wood and fiberglass-reinforced plastic (FRP) for fishing vessels in terms of mechanical properties, and it's cost-effective. The RPB was made from mixed plastic waste, which was collected, chopped into small pieces, and then heated using a special design heating pot which then poured into special mold. The RPB was then mechanically tested using the ASTM D638 standard for tensile strength and the ASTM D790 standard for flexural strength. The results indicate that the RPB’s tensile and flexural strength are 9.4 MPa and 17.22 MPa, respectively, which meets the required mechanical strength standards for marine applications. In addition, the economic analysis shows that using RPB material can lower the construction costs of a 4-GT-sized boat shell hull by 57.79% and 17.09% compared with wood and FRP materials. Based on technical and economic views, the RPB materials have potential as alternative materials for boat shell construction and are more economical. These findings suggest that RPB provides a sustainable alternative to conventional materials and promotes the development of a circular economy within Indonesia's fishing sector. Overall, this research highlights the potential of RPB to contribute to both environmental sustainability and economic feasibility in the construction of small fishing vessels.

Fulltext View|Download
Keywords: Recycled Plastic Waste, Fishing Vessels, Hull Construction, Sustainability, Economic Feasibility

Article Metrics:

  1. B. C. Almroth and H. Eggert, “Marine plastic pollution: sources, impacts, and policy issues,” Review of Environmental Economics and Policy, vol. 13, no. 2, pp. 317–326, 2019, doi: http://doi.org/10.1093/reep/rez012
  2. M. Fava, “Ocean plastic pollution an overview: Data and statistics,” Ocean Literacy Portal, Jun. Accessed: Jun. 13, 2024. [Online]. Available: https://oceanliteracy.unesco.org/plastic-pollution-ocean
  3. Danareksa Research Institute, “Tren Produksi Dan Konsumsi Plastik Di Indonesia,” Danareksa Res. Inst., pp. 10–14, 2023
  4. Badan Pusat Statistik, Environment Statistics of Indonesia 2023. Jakarta: Statistics Indonesia, 2023
  5. L. Nguyen and R. Brouwer, “Fishing for litter: creating an economic market for marine plastics in a sustainable fisheries model,” Frontiers Marine Science, vol. 9, p. 722815, 2022, doi: https://doi.org/10.3389/fmars.2022.722815
  6. G. Kibria, “Impacts of microplastic on fisheries and seafood security—Global analysis and synthesis,” Science of the Total Environment, vol. 904, p. 166652, 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.166652
  7. S. Ghanem, “A Mini-Review of Microplastics in Aquaculture: Sources, Toxicity, Countermeasures and Prospects,” International Journal of Oceanography and Aquaculture, vol. 8, no. 3, pp. 1–4, 2024, doi: http://dx.doi.org/10.23880/ijoac-16000325
  8. R. T. Mathew, “Plastic contamination in aquatic ecosystems: A fisheries perspective,” Asian Journal of Water, Environment and Pollution, vol. 21, no. 3, pp. 1–7, 2024, doi: https://doi.org/10.3233/AJW240028
  9. Kementerian Kelautan dan Perikanan, “Jumlah Nelayan Perikanan Tangkap Laut Menurut WPP (orang),” Kementerian Kelautan dan Perikanan Republik Indonesia. Accessed: Jun. 13, 2024. [Online]. Available: https://portaldata.kkp.go.id/portals/data-statistik/nelayan/tbl-statis/d/55
  10. Kementerian Kelautan dan Perikanan, “Jumlah Kapal Perikanan Laut Kapal Motor menurut Provinsi,” Kementerian Kelautan dan Perikanan Republik Indonesia. Accessed: Jun. 13, 2024. [Online]. Available: https://portaldata.kkp.go.id/portals/data-statistik/jumlah_kapal/tbl-statis/d/90
  11. S. O. Okuma, M. Obaseki, D. O. Ofuyekpone, and O. E. Ashibudike, “A review assessment of fiber-reinforced polymers for maritime applications,” Journal of Advanced Industrial Technology and Application, vol. 4, no. 1, pp. 17–28, 2023, doi: https://doi.org/10.30880/jaita.2023.04.01.003
  12. C. Ciocan, C. Annels, M. Fitzpatrick, F. Couceiro, I. Steyl, and S. Bray, “Glass reinforced plastic (GRP) boats and the impact on coastal environment–Evidence of fiberglass ingestion by marine bivalves from natural populations,” Journal of Hazardous Materials, vol. 472, p. 134619, 2024, doi: https://doi.org/10.1016/j.jhazmat.2024.134619
  13. Z. Han, J. Jang, J.-B. R. G. Souppez, and D. Oh, “Environmental implications of a sandwich structure of a glass fiber-reinforced polymer ship,” Ocean Engineering, vol. 298, p. 117122, 2024, doi: https://doi.org/10.1016/j.oceaneng.2024.117122
  14. P. O. Awoyera and A. Adesina, “Plastic wastes to construction products: Status, limitations and future perspective,” Case Studies in Construction Materials, vol. 12, p. e00330, 2020, doi: https://doi.org/10.1016/j.cscm.2020.e00330
  15. J. Nyika and M. Dinka, “Recycling plastic waste materials for building and construction Materials: A minireview,” Material Today Proceedings, vol. 62, pp. 3257–3262, 2022, doi: https://doi.org/10.1016/j.matpr.2022.04.226
  16. I. Tsuchimoto and Y. Kajikawa, “Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis,” Sustainability, vol. 14, no. 24, p. 16340, 2022, doi: https://doi.org/10.3390/su142416340
  17. T. R. da Silva et al., “Application of plastic wastes in construction materials: A review using the concept of life-cycle assessment in the context of recent research for future perspectives,” Materials (Basel), vol. 14, no. 13, p. 3549, 2021, doi: https://doi.org/10.3390/ma14133549
  18. T. Uvarajan, P. Gani, N. C. Chuan, and N. H. Zulkernain, “Reusing plastic waste in the production of bricks and paving blocks: A review,” European Journal of Environmental and Civil Engineering, vol. 26, no. 14, pp. 6941–6974, 2022, doi: https://doi.org/10.1080/19648189.2021.1967201
  19. S. Sudarno, S. Nicolaas, and V. Assa, “Pemanfaatan Limbah Plastik Untuk Pembuatan Paving block,” Jurnal Teknik Sipil Terapan, vol. 3, no. 2, pp. 101–110, 2021, doi: https://doi.org/10.47600/jtst.v3i2.290
  20. E. N. Kalali, S. Lotfian, M. E. Shabestari, S. Khayatzadeh, C. Zhao, and H. Y. Nezhad, “A critical review of the current progress of plastic waste recycling technology in structural materials,” Current Opinion in Green and Sustainable Chemistry, vol. 40, p. 100763, 2023, doi: https://doi.org/10.1016/j.cogsc.2023.100763
  21. W. Amiruddin, E. S. Hadi, and K. Kiryanto, “Pemanfaatan Material Plastik Hdpe Bekas Drum Kemasan Sebagai Kulit Lambung Perahu,” Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, vol. 11, no. 3, pp. 162–169, 2014
  22. M. Kadhafi, S. Sunardi, A. Triono, and W. K. Sari, “Studi Karakteristik Stabilitas dan Konstruksi Kapal Berbahan High Density Polyethylene (HDPE),” Jurnal Rekayasa Mesin, vol. 12, no. 2, pp. 315–323, 2021, doi: https://doi.org/10.21776/ub.jrm.2021.012.02.9
  23. S. M. Dinata, B. H. Iskandar, F. A. Syamani, and Y. Novita, “Komposit Plastik Sebagai Bahan Alternatif Kapal Penangkap Ikan,” ALBACORE Jurnal Penelitian Perikanan Laut, vol. 7, no. 2, pp. 277–290, 2023, doi: https://doi.org/10.29244/core.7.2.277-290
  24. M. E. Dwikurniawan, “Analisa Teknis dan Ekonomis Penggunaan Material Plastik Daur Ulang Dengan Penambahan Penguat Core Bilah Bambu Sebagai Material Pembangunan Kulit Kapal Ikan L <24 m.,” Institut Teknologi Sepuluh Nopember, 2022
  25. I. P. A. Wibawa et al., “Analysis of tensile and flexural strength of HDPE material joints in ship construction,” Journal of Applied Engineering Science, vol. 21, no. 2, pp. 668–677, 2023, doi: https://doi.org/10.5937/jaes0-41924
  26. H. Supomo et al., “The Use of Bamboo Slats Laminate as A Renewable Construction Material For East Java Traditional Fishing Boat,” Journal of Ocean Technology, vol. 14, no. 1, pp. 78–103, 2019
  27. J. P. Michalski, “Parametric method of preliminary prediction of the ship building costs,” Polish Maritime Research, pp. 16–19, 2004
  28. N. M. Mehat and S. Kamaruddin, “Optimization of mechanical properties of recycled plastic products via optimal processing parameters using the Taguchi method,” Journal of Materials Processing Technology, vol. 211, no. 12, pp. 1989–1994, 2011, doi: https://doi.org/10.1016/j.jmatprotec.2011.06.014
  29. K. Pepliński, “Impact assessment of the uniformity mixing recycled and virgin polymers on the technical extrusion blow molding efficiency,” Journal of Polish CIMEEAC, vol. 10, no. 1, pp. 127–132, 2015
  30. N. H. Zulkernain, P. Gani, N. C. Chuan, and T. Uvarajan, “Utilisation of plastic waste as aggregate in construction materials: A review,” Construction and Building Materials, vol. 296, p. 123669, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.123669
  31. S. Tul Muntaha and M. Keitsch, “A pathway for plastic waste in construction materials,” Sustainable Development, vol. 33, no. 1, pp. 19–29, 2025, doi: https://doi.org/10.1002/sd.3099
  32. G. Yanti and S. W. Megasari, “Utilization of plastic waste as an eco-friendly construction material,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2022, p. 12084. doi: https://doi.org/10.1088/1755-1315/1041/1/012084
  33. ASTM D638-14, “Standard Test Method for Tensile Properties of Plastics,” 2014, ASTM International, West Conshohocken: United States. [Online]. Available: http://www.astm.org
  34. ASTM D790-17, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” 2017, ASTM International, West Conshohocken: United States. [Online]. Available: www.astm.org
  35. DNV-ST-0342, Craft — Structural design and analysis of high-speed craft,”. 2016
  36. Turk Loydu, Tentative Rules for Polyethylene Crafts. Istanbul, 2014
  37. BKI, Rules for the Classfification and Construction. Part 3. Special Ships: Volume VII Rules for Small Vessel up to 24 m 2013 Edition, vol. VII. Jakarta: Biro Klasifikasi Indonesia, 2013

Last update:

No citation recorded.

Last update: 2025-09-29 18:19:28

No citation recorded.