Aktivitas Selulase dan Xilanase dari Komplek Enzim Lignoselulolitik Termostabil Hasil Penguraian Batang Pisang

Fatria Isrami -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
*Agustina L. N. Aminin -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
Published: 1 Apr 2014.
Open Access Copyright 2014 Jurnal Kimia Sains dan Aplikasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Article Info
Section: Research Articles
Language: ID
Full Text:
Statistics: 114 363
Abstract
Penelitian tentang degradasi batang pisang menggunakan komplek enzim lignoselulolitik termostabil untuk memproduksi gula telah dilakukan. Tujuan penelitian ini mendapatkan starter turunan (St) dari konsorsium mikroba starter kompos (S0) pada media batang pisang, memperoleh selulase dan xilanase murni parsial dengan amonium sulfat, mendapatkan data aktivitas spesifik selulase dan xilanase. Hasil fermentasi pada batang pisang menggunakan konsorsium mikroba starter kompos (S0) menghasilkan starter turunan (St) yang baik sehingga dapat digunakan secara kontinyu serta gula reduksi yang dihasilkan lebih tinggi. Diperoleh selulase dan xilanase murni parsial amonium. Didapatkan pula aktivitas spesifik selulase tertinggi pada fraksi 2 sebesar 180 U/mg protein dan untuk xilanase berada pada fraksi 3 sebesar 202 U/mg protein.
Keywords
batang pisang; selulase; xilanase; kompleks enzim lignoselulolitik

Article Metrics:

  1. Mehdi Dashtban, Heidi Schraft, Wensheng Qin, Fungal bioconversion of lignocellulosic residues; opportunities & perspectives, International journal of biological sciences, 5, 6, (2009) 578
  2. Andestian Wijaya, Pengembangan Teknologi Papan Komposit Dari Limbah Batang Pisang (Musa Sp.): Sifat Fisis Dan Mekanis Papan Pada Berbagai Tingkat Asetilasi, Fakultas Kehutanan, IPB, Bogor
  3. Mohammad J Taherzadeh, Keikhosro Karimi, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, International journal of molecular sciences, 9, 9, (2008) 1621-1651 http://dx.doi.org/10.3390/ijms9091621
  4. Sabine Peters, Stefanie Koschinsky, Frank Schwieger, Christoph C Tebbe, Succession of microbial communities during hot composting as detected by PCR–single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes, Applied and environmental microbiology, 66, 3, (2000) 930-936 http://dx.doi.org/10.1128/AEM.66.3.930-936.2000
  5. Vasudeo Zambare, Archana Zambare, Kasiviswanath Muthukumarappan, Lew P Christopher, Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing, International Journal of Energy and Environment, 2, 1, (2011) 99-112
  6. Cristóbal Noé Aguilar, Antonio Aguilera-Carbo, Armando Robledo, Janeth Ventura, Ruth Belmares, Diego Martinez, Raul Rodríguez-Herrera, Juan Contreras, Production of antioxidant nutraceuticals by solid-state cultures of pomegranate (Punica granatum) peel and creosote bush (Larrea tridentata) leaves, Food Technology and Biotechnology, 46, 2, (2008) 218
  7. Valerie Kinsella, Surveys 2. Eight State-of-the-Art Articles on Key Areas in Language Teaching. Cambridge Language Teaching Surveys, ERIC, 1982.
  8. Eleanor LV Harris, S Angal, Protein purification methods, IRL Press at Oxford University Press, 1989.
  9. F. G. Winarno, Kimia Pangan dan Gizi, Penerbit Gramedia, Jakarta, 1992.
  10. Gail Lorenz Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical chemistry, 31, 3, (1959) 426-428 http://dx.doi.org/10.1021/ac60147a030
  11. Albert L. Lehninger, Dasar-dasar biokimia, Erlangga, Jakarta, 2000.
  12. A. Sunna, G. Antranikian, Xylanolytic Enzymes from Fungi and Bacteria, Critical Reviews in Biotechnology, 17, 1, (1997) 39-67 10.3109/07388559709146606