Adsorption of HDTMA-Br surfactant with concentration variation by rice husk-based activated carbon produced by variation of carbonization temperature

DOI: https://doi.org/10.14710/jksa.21.4.171-174

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Published: 31-10-2018
Section: Research Articles
Fulltext PDF Tell your colleagues Email the author

Research has been conducted on the adsorption of HDTMA-Br surfactant by rice husk-activated carbon with variation of carbonization temperature and concentration of HDTMA-Br. This study aims to produce surfactant modified activated carbon (SMAC), therefore it is necessary to determine the influence of carbonization temperature to the adsorption capability of activated carbon on HDTMA-Br surfactant by identifying the amount of HDTMA-Br surfactant absorbed, to characterize the characters of carbon, activated carbon and activated carbon adsorbing surfactant using FTIR and SAA. Carbonization was carried out by pyrolysis with temperature variations of 300, 350 and 400°C. The carbon produced was activated using 60% H3PO4 for 1 hour. After that, the activated carbon was applied to adsorb HDTMA-Br surfactant by varying the concentration that were 300, 1100, 1900, 2700, 3500 and 4300 ppm. The results showed that HDTMA-Br adsorbed tended to increase by increasing the concentration of surfactant. In addition, the best carbonization temperature showing high adsorption capability of activated carbon was at 300°C. FTIR spectra of activated carbon showed the presence of P = O peak; at the SMAC sampel there was peak of N-(CH3)3 with different intensities in three samples. Moreover, SAA analysis showed that the surface area of activated carbon increased compared to carbon and slightly decreased after the activated carbon absorbed HDTMA-Br.

Keywords

Activated carbon; Hexadecyltrimethylammonium bromida; surfactant; adsorption

  1. Galih N. R. Pargiman 
    Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
  2. Arnelli Arnelli  Scopus Sinta
    Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
  3. Yayuk Astuti  Orcid Scopus Scholar Sinta
    Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia
  1. Ratu Yulia Akhsanti, Retno Ariadi Lusiana, Khabibi Khabibi, Pemanfaatan Karbon Aktif Serbuk Gergaji Kayu Jati untuk Menurunkan Chemical Oxygen Demand (COD) Limbah Cair Industri Tekstil, Jurnal Kimia Sains dan Aplikasi, 13, 2, (2010) 66-70
  2. Feti Dwi Kurniati, Pardoyo Pardoyo, Suhartana Suhartana, Sintesis Arang Aktif dari Tempurung Kelapa dan Aplikasinya Untuk Adsorpsi Asap Cair, Jurnal Kimia Sains dan Aplikasi, 14, 3, (2011) 72-76
  3. Arunrat Cheenmatchaya, Sukjit Kungwankunakorn, Preparation of activated carbon derived from rice husk by simple carbonization and chemical activation for using as gasoline adsorbent, International Journal of Environmental Science and Development, 5, 2, (2014) 171 http://dx.doi.org/10.7763/IJESD.2014.V5.472
  4. Diana Nur Al-Latief, Arnelli, Yayuk Astuti, Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal, AIP Conference Proceedings, (2015) 060017 https://doi.org/10.1063/1.4938371
  5. Anchan Paethanom, Kunio Yoshikawa, Influence of pyrolysis temperature on rice husk char characteristics and its tar adsorption capability, Energies, 5, 12, (2012) 4941-4951 http://dx.doi.org/10.3390/en5124941
  6. Salman Raza Naqvi, Yoshimitsu Uemura, Noridah Binti Osman, Suzana Yusup, Mohd Fadhil Nuruddin, Physiochemical properties of pyrolysis oil derived from fast pyrolysis of wet and dried rice husk in a free fall reactor, Applied Mechanics and Materials, 625, (2014) 604-607 https://doi.org/10.4028/www.scientific.net/AMM.625.604
  7. Abdul Ghafur, Mintarlis, Pembuatan Arang Aktif Dari Limbah Padat Sintesis Furfural Berbahan Dasar Sekam Padi Melalui Aktivasi Kimia, UNESA Journal of Chemistry, 3, 3, (2014) 1-8
  8. Dewi Reskiandini, Aktivasi Karbon dari Sekam Padi Menggunakan Aktivator H3PO4 Sebagai Bahan Pembuat Karbon Aktif Termodifikasi Surfaktan (SMAC) untuk Adsorpsi Pb2+, Diponegoro University, Semarang
  9. Shu-Ying Lin, Wei-fang Chen, Ming-Tao Cheng, Qian Li, Investigation of factors that affect cationic surfactant loading on activated carbon and perchlorate adsorption, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, (2013) 236-242 https://doi.org/10.1016/j.colsurfa.2013.05.048
  10. Eko Tri Sumarnadi Agustinus, Anggoro Tri Mursito, Happy Sembiring, Peningkatan daya serap karbon aktif terhadap ion logam hexavalent chromium (CrVI) melalui modifikasi dengan cationic surfactant (ethylinediamine), RISET Geologi dan Pertambangan, 23, 1, (2013) 15-26
  11. Mamdoh R. Mahmoud, Gehan E. Sharaf El-deen, Mohamed A. Soliman, Surfactant-impregnated activated carbon for enhanced adsorptive removal of Ce(IV) radionuclides from aqueous solutions, Annals of Nuclear Energy, 72, (2014) 134-144 https://doi.org/10.1016/j.anucene.2014.05.006
  12. Widajanti Wibowo, Tresye Utari, Rika Tri Yunarti, Anion exchange capacity of chromate on modified zeolite clinoptilolite with HDTMA-Br and its regeneration, Makara Journal of Science, 15, 1, (2011) 53-57 https://doi.org/10.7454/mss.v15i1.878
  13. Retno Agnestisia, Noer Komari, Sunardi Sunardi, Adsorpsi Fosfat (PO43-) Menggunakan Selulosa Purun Tikus (Eleocharis dulcis) Termodifikasi Heksadesiltrimetilammonium Bromida (HDTMABr), Jurnal Sains dan Terapan Kimia, 6, 1, (2016) 71-86
  14. U Aroke, U El-Nafaty, XRF, XRD and FTIR properties and characterization of HDTMA-Br surface modified organo-kaolinite clay, International Journal of Emerging Technology and Advanced Engineering, 4, 4, (2014) 817-825