Lowered Sintering Temperature on Synthesis of La9.33Si6O26 (LSO) – La0.8Sr0.2Ga0.8Mg0.2O2.55 (LSGM) Electrolyte Composite and the Electrical Performance on La0.7Ca0.3MnO3 (LCM) Cathode

Yoga Trianzar Malik  -  Chemistry Department, Faculty of Mathematics and Science, Universitas Padjadjaran, Indonesia
*Atiek Rostika Noviyanti orcid scopus  -  Chemistry Department, Faculty of Mathematics and Science, Universitas Padjadjaran, Indonesia
Dani Gustaman Syarif scopus  -  National Nuclear Energy Agency Indonesia (PSTNT)-BATAN, Indonesia
Received: 15 Aug 2018; Revised: 20 Oct 2018; Accepted: 22 Oct 2018; Published: 31 Oct 2018.
DOI: https://doi.org/10.14710/jksa.21.4.205-210 View
XRD raw file for LSO-LSGM
Type Research Instrument
  Download (33KB)    Indexing metadata
ASR measurement on LSO-LSGM/LCM
Type Research Results
  Download (208KB)    Indexing metadata
Open Access Copyright 2018 Jurnal Kimia Sains dan Aplikasi
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:

Solid oxide fuel cell (SOFC) is the device that can convert chemical energy into electricity with highest efficiency among other fuel cell. La9.33Si6O26 (LSO) is the potential electrolyte at intermediate operation temperature SOFC. Low ionic conductivity of lanthanum silicate-based electrolyte will lead into bad electrical performance on lanthanum manganite-based anode. In this study, LSO was combine with La0.8Sr0.2Ga0.8Mg0.2O2.55 (LSGM) electrolyte by using conventional solid state reaction to enhance the electrical performance of LSO on LCM cathode. However, pre-requisite high sintering temperature on preparation of LSO-LSGM composite will lead into phase transition phase of LSGM that may affect in decreasing the electrical performance. This study resulted that lowered sintering temperature from its ideal temperature still give an improved electrical performance of LCM/LSO-LSGM/LCM symmetrical cell. The ASR value is 0.14 Ω.cm2 which much lower than its analogous symmetrical cell, LSM/LSO/LSM that was reported before.

Note: This article has supplementary file(s).

Funding: Dani G. Syarif, Center for Applied Nuclear Science and Technology, National Nuclear Energy Agency Indonesia (PSTNT)-BATAN, Bandung, Indonesia

Article Metrics:

  1. International Energy Agency (IEA), Key World Energy Statistics, in, 2017
  2. Brandon Owens and John McGuinness, GE-Fuel Cells the Power of Tomorrow, General Electric Company, 2015
  3. Abdalla M. Abdalla, Shahzad Hossain, Atia T. Azad, Pg Mohammad I. Petra, Feroza Begum, Sten G. Eriksson and Abul K. Azad, Nanomaterials for solid oxide fuel cells: A review, Renewable and Sustainable Energy Reviews, 82, (2018) 353-368 https://doi.org/10.1016/j.rser.2017.09.046
  4. Atiek Rostika Noviyanti, Ferli S. Irwansyah, Sahrul Hidayat, Arie Hardian, Dani Gustaman Syarif, Yati B. Yuliyati and Iwan Hastiawan, Preparation and conductivity of composite apatite La9.33Si6O26 (LSO) - Zr0.85Y0.15O1.925 (YSZ), AIP Conference Proceedings, 1712, 1, (2016) 050002 http://dx.doi.org/10.1063/1.4941885
  5. Qingle Shi, Hua Zhang, Tianjing Li, Fangli Yu, Haijun Hou and Pengde Han, Preparation and characterization of LSO-SDC composite electrolytes, Journal of Rare Earths, 33, 3, (2015) 304-309 https://doi.org/10.1016/S1002-0721(14)60418-X
  6. Mitsumasa Sakao, Tsuguo Ishihara and Hideki Yoshioka, Fabrication and ionic conductivity of oriented lanthanum silicate films with apatite-type structure, Solid State Ionics, 293, (2016) 51-55 https://doi.org/10.1016/j.ssi.2016.05.018
  7. Siddhartha Pathak, David Steinmetz, Jakob Kuebler, E. Andrew Payzant and Nina Orlovskaya, Mechanical behavior of La0.8Sr0.2Ga0.8Mg0.2O3 perovskites, Ceramics International, 35, 3, (2009) 1235-1241 https://doi.org/10.1016/j.ceramint.2008.06.013
  8. Arup Mahata, Pradyot Datta and Rajendra N. Basu, Synthesis and characterization of Ca doped LaMnO3 as potential anode material for solid oxide electrolysis cells, Ceramics International, 43, 1, Part A, (2017) 433-438 https://doi.org/10.1016/j.ceramint.2016.09.177
  9. D. Marrero-López, M. C. Martín-Sedeño, J. Peña-Martínez, J. C. Ruiz-Morales, P. Núñez, M. A. G. Aranda and J. R. Ramos-Barrado, Evaluation of apatite silicates as solid oxide fuel cell electrolytes, Journal of Power Sources, 195, 9, (2010) 2496-2506 https://doi.org/10.1016/j.jpowsour.2009.11.068
  10. V. Thangadurai and W. Weppner, Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics, 12, 1, (2006) 81-92 http://dx.doi.org/10.1007/s11581-006-0013-7
  11. Kiyoshi Kobayashi and Yoshio Sakka, Research progress in nondoped lanthanoid silicate oxyapatites as new oxygen-ion conductors, Journal of the Ceramic Society of Japan, 122, 1431, (2014) 921-939 http://dx.doi.org/10.2109/jcersj2.122.921
  12. S. Hui, X. Ma, H. Zhang, J. Dai, J. Roth, T. D. Xiao and D. E. Reisner, Plasma Sprayed LSGM Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells, ECS Proceedings Volumes, 2003-07, (2003) 330-338 http://dx.doi.org/10.1149/200307.0330PV
  13. Morris Argyle and Calvin Bartholomew, Heterogeneous Catalyst Deactivation and Regeneration: A Review, Catalysts, 5, 1, (2015) 145 https://doi.org/10.3390/catal5010145
  14. Masahiro Kajitani, Motohide Matsuda, Akinori Hoshikawa, Ken-ichi Oikawa, Shuki Torii, Takashi Kamiyama, Fujio Izumi and Michihiro Miyake, Neutron Diffraction Study on Lanthanum Gallate Perovskite Compound Series, Chemistry of Materials, 15, 18, (2003) 3468-3473 http://dx.doi.org/10.1021/cm030294y
  15. Atiek Rostika Noviyanti, Bambang Prijamboedi, I Nyoman Marsih and Ismunandar Ismu, Hydrothermal Preparation of Apatite-Type Phases La9.33Si6O26 and La9M1Si6O26.5 (M = Ca, Sr, Ba), Journal of Mathematical and Fundamental Sciences, 44, 2, (2013) 193-203 http://dx.doi.org/10.5614/itbj.sci.2012.44.2.8
  16. Atiek Noviyanti, Juliandri, A. S. Utari and Yoga Trianzar Malik, Influence of synthesis time on lanthanum silicate apatite (La9.33Si6O26) properties, Research Journal of Chemistry and Environment, 22, (2018) 120-123
  17. Natarajan Thenmozhi and Ramachandran Saravanan, High-temperature synthesis and electronic bonding analysis of Ca-doped LaMnO3 rare-earth manganites, Rare Metals, (2017) http://dx.doi.org/10.1007/s12598-017-0964-z
  18. Anindya Pal, Sudeep Paul, Amit Roy Choudhury, Vamsi Krishna Balla, Mitun Das and Arijit Sinha, Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications, Materials Letters, 203, (2017) 89-92 https://doi.org/10.1016/j.matlet.2017.05.103
  19. Benoît Philippeau, Fabrice Mauvy, Cécile Mazataud, Sébastien Fourcade and Jean-Claude Grenier, Comparative study of electrochemical properties of mixed conducting Ln2NiO4+δ (Ln=La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3−δ as SOFC cathodes associated to Ce0.9Gd0.1O2−δ, La0.8Sr0.2Ga0.8Mg0.2O3−δ and La9Sr1Si6O26.5 electrolytes, Solid State Ionics, 249-250, (2013) 17-25 https://doi.org/10.1016/j.ssi.2013.06.009
  20. Fitria Rahmawati, Bambang Prijamboedi, Syoni Soepriyanto and Ismunandar, SOFC composite electrolyte based on LSGM-8282 and zirconia or doped zirconia from zircon concentrate, International Journal of Minerals, Metallurgy, and Materials, 19, 9, (2012) 863-871 http://dx.doi.org/10.1007/s12613-012-0640-0
  21. K. Huang and J. B. Goodenough, Solid Oxide Fuel Cell Technology: Principles, Performance and Operations, Elsevier Science, 2009
  22. Anna Magrasó, Marie-Laure Fontaine, Rune Bredesen, Reidar Haugsrud and Truls Norby, Cathode compatibility, operation, and stability of LaNbO4-based proton conducting fuel cells, Solid State Ionics, 262, (2014) 382-387 https://doi.org/10.1016/j.ssi.2013.12.009
  23. Deni S. Khaerudini, Guoqing Guan, Peng Zhang, Xiaogang Hao, Zhongde Wang, Chunfeng Xue, Yutaka Kasai and Abuliti Abudula, Performance assessment of Bi0.3Sr0.7Co0.3Fe0.7O3−δ-LSCF composite as cathode for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.8Mg0.2O3−δ electrolyte, Journal of Power Sources, 298, (2015) 269-279 https://doi.org/10.1016/j.jpowsour.2015.08.075
  24. Xiao Guo Cao and San Ping Jiang, Identification of oxygen reduction processes at (La,Sr)MnO3 electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells, International Journal of Hydrogen Energy, 38, 5, (2013) 2421-2431 https://doi.org/10.1016/j.ijhydene.2012.12.043
  25. Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Iio and Y. Esaki, Ln1−xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells, Solid State Ionics, 118, 3, (1999) 187-194 https://doi.org/10.1016/S0167-2738(98)00440-8

Last update: 2021-05-06 11:39:14

  1. Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling

    Akram La Kilo, Triwahyuni S. Umamah, Lukman A. R. Laliyo. Jurnal Kimia Sains dan Aplikasi, 22 (4), 2019. doi: 10.14710/jksa.22.4.129-135
  2. Structure, Chemical Stability and Magnetic Properties of Lanthanum Silicate Oxide Apatite Synthesized by Hydrothermal Method

    Materials Science Forum, 127 , 2019. doi: 10.4028/www.scientific.net/MSF.966.415
  3. A Compatibility in the Single Cell of the NiO/LSGM/LSCF

    Atiek Rostika Noviyanti, Claudia Agesti, Yusi Deawati, Dani Gustaman Syarif. Jurnal Kimia Sains dan Aplikasi, 23 (10), 2020. doi: 10.14710/jksa.23.10.346-352

Last update: 2021-05-06 11:39:14

No citation recorded.