Interlayer-free Membran Silika Pektin untuk Pervaporasi Air Rawa Asin

Interlayer-free Silica Pectin Membrane for Wetland Saline Water via Pervaporation

Erdina Lulu Atika Rampun  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
*Muthia Elma scopus  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Isna Syauqiah  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Meilana Dharma Putra  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Aulia Rahma  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Amalia Enggar Pratiwi  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Received: 31 Mar 2019; Revised: 7 May 2019; Accepted: 15 May 2019; Published: 31 May 2019.
Open Access Copyright 2019 Jurnal Kimia Sains dan Aplikasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: Research Articles
Language: ID
Full Text:
Statistics: 413 175
Abstract
Wetland in South Kalimantan is one of surface water sources to provide clean water. However, seawater intrusion has spread into the wetland aquifer and reduce the quality of water. Silica-pectin membrane is a promising technology for desalination. The membranes were tested for desalination by pervaporation at room temperature (~25 °C). During pervaporation process, the water contacts to membrane and the separation is started to occurs as vapour phase by maintaining vacuum pressure (~1 bar). The permeate was collected in the cold trap after condensed using nitrogen liquid. The purpose of this research was to investigate the performance of interlayer-free silica pectin membrane for wetland saline water. Experimental results shows the fluxes of membrane are 0.35 and 0.19 kg.m-2 h-1 ( pectin 0%wt); 0.23 and 0.16 kg.m-2 h-1 (pectin 0.1%wt); 0.58 and 3.63 kg.m-2 h-1 (pectin 0.5%wt); 3.40 and 0.12 kg.m-2 h-1 (pectin 2.5%wt) calcined at 300 and 400 °C, respectively. Natural organic matter (NOM) and salt concentration in wetland saline water can reduce the fluxes up to (~98%). Nevertheless, overall salt rejection of membranes achieved >99%. It was found that low calcination gives better performance at high pectin concentration. While pectin concentration was limited at high calcination.
Keywords
Carbon sustainable template; pervaporation; silica precursor; sol-gel; wetland saline water

Article Metrics:

  1. KLH, Strategi Pengelolaan Lahan Basah Nasional, in, Jakarta, 2004.
  2. Mahmud, Chairul Abdi, Badarudddin Mu'min, Removal Natural Organic Matter (NOM) in Peat Water From Wetland Area By Coagulation-Ultrafiltration Hybrid Process With Pretreatment Two Stage Coagulation, Journal of Wetlands Enviromental Management, 1, (2013) 42-49 http://dx.doi.org/10.20527/jwem.v1i1.88
  3. L. C. Klein, D. Gallagher, Pore structures of sol-gel silica membranes, Journal of Membrane Science, 39, 3, (1988) 213-220 https://doi.org/10.1016/S0376-7388(00)80930-8
  4. Muthia Elma, David K. Wang, Christelle Yacou, João C. Diniz da Costa, Interlayer-free P123 carbonised template silica membranes for desalination with reduced salt concentration polarisation, Journal of Membrane Science, 475, Supplement C, (2015) 376-383 https://doi.org/10.1016/j.memsci.2014.10.026
  5. Zongli Xie, Manh Hoang, Tuan Duong, Derrick Ng, Buu Dao, Stephen Gray, Sol–gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation, Journal of Membrane Science, 383, 1, (2011) 96-103 https://doi.org/10.1016/j.memsci.2011.08.036
  6. Shengnan Wang, David K. Wang, Simon Smart, João C. Diniz da Costa, Improved stability of ethyl silicate interlayer-free membranes by the rapid thermal processing (RTP) for desalination, Desalination, 402, (2017) 25-32 https://doi.org/10.1016/j.desal.2016.09.025
  7. S. Wijaya, M. C. Duke, J. C. Diniz da Costa, Carbonised template silica membranes for desalination, Desalination, 236, 1, (2009) 291-298 https://doi.org/10.1016/j.desal.2007.10.079
  8. N. Z. K. Shaari, N. A. Rahman, R. M. Tajuddin, Thin film composite membrane with hybrid membrane as the barrier layer: Preparation and characterization, 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER), (2012) 615-620 10.1109/CHUSER.2012.6504386
  9. Muthia Elma, David K. Wang, Christelle Yacou, Julius Motuzas, João C. Diniz da Costa, High performance interlayer-free mesoporous cobalt oxide silica membranes for desalination applications, Desalination, 365, (2015) 308-315 https://doi.org/10.1016/j.desal.2015.02.034
  10. Adi Darmawan, Linda Karlina, Yayuk Astuti, Sriatun, David K. Wang, Julius Motuzas, J. C. Diniz da Costa, Interlayer free – nickel doped silica membranes for desalination, IOP Conference Series: Materials Science and Engineering, 172, (2017) 012001 http://doi.org/10.1088/1757-899x/172/1/012001
  11. Masakoto Kanezashi, Masashi Asaeda, Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature, Journal of Membrane Science, 271, 1, (2006) 86-93 https://doi.org/10.1016/j.memsci.2005.07.011
  12. Adi Darmawan, Linda Karlina, Yayuk Astuti, Sriatun, Julius Motuzas, David K. Wang, João C. Diniz da Costa, Structural evolution of nickel oxide silica sol-gel for the preparation of interlayer-free membranes, Journal of Non-Crystalline Solids, 447, (2016) 9-15 https://doi.org/10.1016/j.jnoncrysol.2016.05.031
  13. S. Smart, J. F. Vente, J. C. Diniz da Costa, High temperature H2/CO2 separation using cobalt oxide silica membranes, International Journal of Hydrogen Energy, 37, 17, (2012) 12700-12707 https://doi.org/10.1016/j.ijhydene.2012.06.031
  14. Liang Liu, David K. Wang, Dana L. Martens, Simon Smart, João C. Diniz da Costa, Interlayer-free microporous cobalt oxide silica membranes via silica seeding sol–gel technique, Journal of Membrane Science, 492, (2015) 1-8 https://doi.org/10.1016/j.memsci.2015.05.028
  15. Adi Darmawan, Julius Motuzas, Simon Smart, Anne Julbe, João C. Diniz da Costa, Binary iron cobalt oxide silica membrane for gas separation, Journal of Membrane Science, 474, (2015) 32-38 https://doi.org/10.1016/j.memsci.2014.09.033
  16. S. D. Pasini Cabello, N. A. Ochoa, E. A. Takara, S. Mollá, V. Compañ, Influence of Pectin as a green polymer electrolyte on the transport properties of Chitosan-Pectin membranes, Carbohydrate Polymers, 157, Supplement C, (2017) 1759-1768 https://doi.org/10.1016/j.carbpol.2016.11.061
  17. Túlio Ítalo S. Oliveira, Morsyleide F. Rosa, Fabio Lima Cavalcante, Paulo Henrique F. Pereira, Graham K. Moates, Nikolaus Wellner, Selma E. Mazzetto, Keith W. Waldron, Henriette M. C. Azeredo, Optimization of pectin extraction from banana peels with citric acid by using response surface methodology, Food Chemistry, 198, Supplement C, (2016) 113-118 https://doi.org/10.1016/j.foodchem.2015.08.080
  18. Isdayanti Mirna, Rasidi M. Irham, Ekstraksi Pektin Dari Kulit Pisang Kepok (Musa Paradisiaca Linn) Sebagai Edible Film dan Coating untuk Meningkatkan Kualitas Simpan Sosis Lambung Mangkurat, Banjarbaru
  19. Antony Allwyn Sundarraj, Ranganathan Thottiam Vasudevan, Gobikrishnan Sriramulu, Optimized extraction and characterization of pectin from jackfruit (Artocarpus integer) wastes using response surface methodology, International Journal of Biological Macromolecules, 106, (2018) 698-703 https://doi.org/10.1016/j.ijbiomac.2017.08.065
  20. Wei Zhang, Fan Xie, Xiaohong Lan, Shengxiang Gong, Zhengwu Wang, Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization, Journal of Food Engineering, 216, (2018) 90-97 https://doi.org/10.1016/j.jfoodeng.2017.07.032
  21. Robin J White, Vitaly L Budarin, James H Clark, Pectin-Derived Porous Materials, Chemistry – A European Journal, 16, 4, (2010) 1326-1335 https://doi.org/10.1002/chem.200901879
  22. A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, 157, 1, (2006) 11-27 https://doi.org/10.1016/j.jpowsour.2006.02.065
  23. M. M. Titirici, M. Antonietti, Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization, Chem Soc Rev, 39, 1, (2010) 103-116 https://doi.org/10.1039/b819318p
  24. Rasel Das, Md Eaqub Ali, Sharifah Bee Abd Hamid, Seeram Ramakrishna, Zaira Zaman Chowdhury, Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination, 336, Supplement C, (2014) 97-109 https://doi.org/10.1016/j.desal.2013.12.026
  25. M. C. Duke, S. Mee, J. C. Diniz da Costa, Performance of porous inorganic membranes in non-osmotic desalination, Water Research, 41, 17, (2007) 3998-4004 https://doi.org/10.1016/j.watres.2007.05.028
  26. M. Elma, C. Yacou, J. C. Diniz da Costa, D. K. Wang, Performance and long term stability of mesoporous silica membranes for desalination, Membranes (Basel), 3, 3, (2013) 136-150 https://doi.org/10.1002/chem.200901879/10.3390/membranes3030136
  27. Muthia Elma, Zaini Lambri Assyaifi, Hairullah, Pembuatan silica thin film sebagai pelapis membran dari prekursor TEOS (Tetra Ethyl Orthosilicate), Quantum Jurnal Inovasi Pendidikan Sains, 8, 2, (2017) 78-82 https://doi.org/10.1002/adfm.200800624
  28. Chen Zhou, Junjie Zhou, Aisheng Huang, Seeding-free synthesis of zeolite FAU membrane for seawater desalination by pervaporation, Microporous and Mesoporous Materials, 234, (2016) 377-383 https://doi.org/10.1016/j.micromeso.2016.07.050
  29. Muthia Elma, Christelle Yacou, David K. Wang, Simon Smart, João C. Diniz da Costa, Microporous Silica Based Membranes for Desalination, Water, 4, 3, (2012) 629 https://doi.org/10.3390/w4030629
  30. Renate M. de Vos, Wilhelm F. Maier, Henk Verweij, Hydrophobic silica membranes for gas separation, Journal of Membrane Science, 158, 1, (1999) 277-288 https://doi.org/10.1016/S0376-7388(99)00035-6
  31. Jinhui Wang, Masakoto Kanezashi, Tomohisa Yoshioka, Toshinori Tsuru, Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes, Journal of Membrane Science, 415-416, (2012) 810-815 https://doi.org/10.1016/j.memsci.2012.05.073
  32. Anu Matilainen, Egil T. Gjessing, Tanja Lahtinen, Leif Hed, Amit Bhatnagar, Mika Sillanpää, An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment, Chemosphere, 83, 11, (2011) 1431-1442 https://doi.org/10.1016/j.chemosphere.2011.01.018
  33. Armine Avagyan, Benjamin R. K. Runkle, Lars Kutzbach, Application of high-resolution spectral absorbance measurements to determine dissolved organic carbon concentration in remote areas, Journal of Hydrology, 517, (2014) 435-446 https://doi.org/10.1016/j.jhydrol.2014.05.060
  34. A. Maartens, P. Swart, E. P. Jacobs, Humic membrane foulants in natural brown water: characterization and removal, Desalination, 115, 3, (1998) 215-227 https://doi.org/10.1016/S0011-9164(98)00041-1
  35. S. R. Gray, C. B. Ritchie, T. Tran, B. A. Bolto, Effect of NOM characteristics and membrane type on microfiltration performance, Water Research, 41, 17, (2007) 3833-3841 https://doi.org/10.1016/j.watres.2007.06.020
  36. Xiaojun Cui, Kwang-Ho Choo, Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment, Environmental Engineering Research, 19, 1, (2014) 1-8 https://doi.org/10.4491/eer.2014.19.1.001
  37. Hiroshi Yamamura, Kenji Okimoto, Katsuki Kimura, Yoshimasa Watanabe, Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes, Water Research, 54, (2014) 123-136 https://doi.org/10.1016/j.watres.2014.01.024
  38. Kang Xie, Siqing Xia, Jing Song, Jixiang Li, Liping Qiu, Jiabin Wang, Shoubin Zhang, The Effect of Salinity on Membrane Fouling Characteristics in an Intermittently Aerated Membrane Bioreactor, Journal of Chemistry, 2014, (2014) 7 https://doi.org/10.1155/2014/765971