skip to main content

Kompatibilitas Nanokristal Selulosa Termodifikasi Setrimonium Klorida (CTAC) dalam Matriks Poliasam Laktat sebagai Material Pengemas

Compatibility of Celluloce Nanocrystal Modified Cetrimmonium Chloride (CTAC) in Polylactic Acid Matrix as Packaging Material

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor AgricuItural University, Indonesia

2Surfactant and Bioenergy Research Center, Bogor AgricuItural University, Indonesia

Received: 9 Jun 2019; Revised: 5 Jul 2019; Accepted: 20 Jul 2019; Published: 31 Jul 2019.
Open Access Copyright 2019 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract
Growth of population increases the consumption of nonbiodegradable plastic which causes waste buildup. Diversion of plastic material from nonbiodegradable material to biodegradable is an important alternatif. PLA is a plastic polymer that is easily degraded but very brittle. Palm oil waste containing oil palm empty bunches has the potential as a reinforcement material because the cellulose content is 30-40%. Minimizing size to nanoscale will increase the surface area and dispersion ability of cellulose dispersibility into the PLA polymer matrix, thus increasing compatibility in terms of and mechanical properties and surface morphology of the composite. Hydrolysis by strong acid and centrifugation at 5000 rpm succeeded in making cellulose nanocrystal with index of polidisperse 0.5 and average particle diameter of 7.967 nm. CTAC as a solubilizer and surface modifier agent successfully made interaction to cellulose nanocrystal as confirmed on absorption at wave number 2850 cm-1, 2960 cm-1 and 720 cm-1. Modified At the fixed CTAC concentration of 0.2 mol, the best mechanical properties of CNC-PLA composites were obtained in the composition ratio of 90: 10 with tensile strength of 26.295 MPa, elongation break of 68.18%, and Young modulus of 0.387 Gpa. The greater the CTAC added to nanocrystal cellulose, the lower the reinforcement value and the less reduction. Based on the results of morphology surface characterization, PLA surfaces required for degradation were obtained.
Fulltext View|Download
Keywords: CTAC; cellulose nanocrystalline; polylactic acid, mechanical properties

Article Metrics:

  1. T. C. Mokhena, J. S. Sefadi, E. R. Sadiku, M. J. John, M. J. Mochane, A. Mtibe, Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites, Polymers, 10, 12, (2018) 1363 https://doi.org/10.3390/polym10121363
  2. Astrid J. R. Lasprilla, Guillermo A. R. Martinez, Betânia H. Lunelli, André L. Jardini, Rubens Maciel Filho, Poly-lactic acid synthesis for application in biomedical devices — A review, Biotechnology Advances, 30, 1, (2012) 321-328 https://doi.org/10.1016/j.biotechadv.2011.06.019
  3. Joseph K. Muiruri, Songlin Liu, Wern Sze Teo, Junhua Kong, Chaobin He, Highly Biodegradable and Tough Polylactic Acid–Cellulose Nanocrystal Composite, ACS Sustainable Chemistry & Engineering, 5, 5, (2017) 3929-3937 http://doi.org/10.1021/acssuschemeng.6b03123
  4. Zhen Hu, Richard M. Berry, Robert Pelton, Emily D. Cranston, One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols, ACS Sustainable Chemistry & Engineering, 5, 6, (2017) 5018-5026 http://doi.org/10.1021/acssuschemeng.7b00415
  5. Jesus David Coral Medina, Adenise Lorenci Woiciechowski, Arion Zandona Filho, Lucas Bissoqui, Miguel D. Noseda, Luciana Porto de Souza Vandenberghe, Sônia Faria Zawadzki, Carlos Ricardo Soccol, Biological activities and thermal behavior of lignin from oil palm empty fruit bunches as potential source of chemicals of added value, Industrial Crops and Products, 94, (2016) 630-637 https://doi.org/10.1016/j.indcrop.2016.09.046
  6. Farah Fahma, Sugiarto, Titi Candra Sunarti, Sabrina Manora Indriyani, Nurmalisa Lisdayana, Thermoplastic Cassava Starch-PVA Composite Films with Cellulose Nanofibers from Oil Palm Empty Fruit Bunches as Reinforcement Agent, International Journal of Polymer Science, 2017, (2017) 5 https://doi.org/10.1155/2017/2745721
  7. Erin M. Sullivan, Robert J. Moon, Kyriaki Kalaitzidou, Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films, Materials, 8, 12, (2015) 8106-8116 https://doi.org/10.3390/ma8125447
  8. Alireza Kaboorani, Bernard Riedl, Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant, Industrial Crops and Products, 65, (2015) 45-55 https://doi.org/10.1016/j.indcrop.2014.11.027
  9. Farhan Ansari, Michaela Salajková, Qi Zhou, Lars A. Berglund, Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix, Biomacromolecules, 16, 12, (2015) 3916-3924 https://doi.org/10.1021/acs.biomac.5b01245
  10. Blaise L. Tardy, Shingo Yokota, Mariko Ago, Wenchao Xiang, Tetsuo Kondo, Romain Bordes, Orlando J. Rojas, Nanocellulose–surfactant interactions, Current Opinion in Colloid & Interface Science, 29, (2017) 57-67 https://doi.org/10.1016/j.cocis.2017.02.004
  11. Tiffany Abitbol, Heera Marway, D. Cranston Emily, Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide, in: Nordic Pulp & Paper Research Journal, 2014, pp. 46
  12. Daniel Bondeson, Kristiina Oksman, Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites, Composite Interfaces, 14, 7-9, (2007) 617-630 https://doi.org/10.1163/156855407782106519
  13. Shu-Ying Lin, Wei-fang Chen, Ming-Tao Cheng, Qian Li, Investigation of factors that affect cationic surfactant loading on activated carbon and perchlorate adsorption, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, (2013) 236-242 https://doi.org/10.1016/j.colsurfa.2013.05.048
  14. F. O. Ohwoavworhua, T. A. Adelakun, Phosphoric Acid-Mediated Depolymerization and Decrystallization of α-Cellulose Obtained from Corn Cob: Preparation of Low Crystallinity Cellulose and Some Physicochemical Properties, Tropical Journal of Pharmaceutical Research, 4, 2, (2005) 509-512 http://dx.doi.org/10.4314/tjpr.v4i2.14627
  15. Y. K. Dasan, A. H. Bhat, Faiz Ahmad, Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material, Carbohydrate Polymers, 157, (2017) 1323-1332 https://doi.org/10.1016/j.carbpol.2016.11.012
  16. M. K. Mohamad Haafiz, Azman Hassan, Zainoha Zakaria, I. M. Inuwa, Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose, Carbohydrate Polymers, 103, (2014) 119-125 https://doi.org/10.1016/j.carbpol.2013.11.055
  17. Eduardo Robles, Iñaki Urruzola, Jalel Labidi, Luis Serrano, Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites, Industrial Crops and Products, 71, (2015) 44-53 https://doi.org/10.1016/j.indcrop.2015.03.075
  18. Nasrullah Razali, Md. Sohrab Hossain, Owolabi Abdulwahab Taiwo, Mazlan Ibrahim, Nur Wahidah Mohd Nadzri, Nadilah Razak, Nurul Fazita Mohammad Rawi, Marliana Mohd Mahadar, Mohamad Haafiz Mohamad Kassim, Influence of Acid Hydrolysis Reaction Time on the Isolation of Cellulose Nanowhiskers from Oil Palm Empty Fruit Bunch Microcrystalline Cellulose, BioResources, 12, 3, (2017) 6773-6788
  19. E. Fortunati, I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L. A. Berglund, J. M. Kenny, Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles, Carbohydrate Polymers, 87, 2, (2012) 1596-1605 https://doi.org/10.1016/j.carbpol.2011.09.066
  20. Liqing Wei, Nicole M. Stark, Ronald C. Sabo, Laurent Matuana, Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging products, Forest Products Society International Convention, Portland, Oregon, (2016)
  21. Hayati Samsudin, Rafael Auras, Dharmendra Mishra, Kirk Dolan, Gary Burgess, Maria Rubino, Susan Selke, Herlinda Soto-Valdez, Migration of antioxidants from polylactic acid films: A parameter estimation approach and an overview of the current mass transfer models, Food Research International, 103, (2018) 515-528 https://doi.org/10.1016/j.foodres.2017.09.021
  22. Gelsoneide S. Góis, Neymara C. Nepomuceno, Carlos H.A. França, Yeda M.B. Almeida, Eduardo P. Hernandéz, Juliano E. Oliveira, Mauricio P. Oliveira, Eliton S. Medeiros, Amélia S.F. Santos, Influence of morphology and dispersion stability of CNC modified with ethylene oxide derivatives on mechanical properties of PLA-based nanocomposites, Polymer Composites, 40, S1, (2019) E399-E408 https://doi.org/10.1002/pc.24704

Last update:

  1. Simultaneous Effect of Ultrasonic and Chemical Treatment on the Extraction of Nanocellulose From Sugarcane Bagasse

    A'yunil Hisbiyah, Lilik Nurfadlilah. Jurnal Kimia Sains dan Aplikasi, 24 (5), 2021. doi: 10.14710/jksa.24.5.146-151
  2. Preparation of low crystallinity nanocellulose using acid hydrolysis

    Ayu Syufiatun Tarigan, Basuki Wirjosentono, Cut Fatimah Zuhra, Zulnazri. THE II INTERNATIONAL SCIENTIFIC CONFERENCE “INDUSTRIAL AND CIVIL CONSTRUCTION 2022”, 2758 , 2023. doi: 10.1063/5.0136122

Last update: 2024-11-22 03:12:18

No citation recorded.