skip to main content

Studi Kestabilan Zirkonia Terdoping Kation Trivalen melalui Pemodelan Atomistik

Study on the Stability of Trivalent Cations Doped Zirconia through Atomistic Modeling

Department of Chemistry, Faculty of Sciences and Mathematics, Universitas Negeri Gorontalo, Gorontalo, Indonesia

Received: 30 Apr 2019; Revised: 23 Jul 2019; Accepted: 24 Jul 2019; Published: 31 Jul 2019.
Open Access Copyright 2019 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The aim of this research was to study the stability of the structure of the ZrO2 doped with trivalent oxide Zr1-xMxO2-δ (M = La3+, Nd3+, Sm3+, Eu3+, Gd3+, Y3+, Er3+, Yb3+ and Lu3+ through atomistic modelling and bond valence sum method. Short range potential used in this study was Buckinghams’ potential. Result of geometry optimization at constant pressure shown both cell parameters of ZrO2 was in good agreement with experimental results because of the difference was only 0.11%. Increasing the concentration and the size of substituting dopant of ZrO2 makes the lattice energy of the doped structure was more positive so that the stability of the doped ZrO2 structure decreases. The decrease in the stability of ZrO2 doped with Y3+, Er3+, Yb3+ and Lu3+was smaller than ZrO2 doped with La3+, Nd3+, Sm3+, Eu3+ and Gd3+. BVS results shown that the structure of ZrO2 doped with La3+was not appropriate because it has different value of BVS was more than 0.1

Fulltext View|Download
Keywords: zirconia; cation trivalent, lattice energy; atomistic modeling; bond valence sum

Article Metrics:

  1. Xin Xia, Richard Oldman, Richard Catlow, Computational Modeling Study of Bulk and Surface of Yttria-Stabilized Cubic Zirconia, Chemistry of Materials, 21, 15, (2009) 3576-3585 https://doi.org/10.1021/cm900417g
  2. Akram La Kilo, Simulasi Komputasi Hantaran Ion di BIMEVOX, Departemen Kimia, Institut Teknologi Bandung, Bandung
  3. Marco Cologna, Andre L. G. Prette, Rishi Raj, Flash-Sintering of Cubic Yttria-Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing, Journal of the American Ceramic Society, 94, 2, (2011) 316-319 https://doi.org/10.1111/j.1551-2916.2010.04267.x
  4. Jérôme Chevalier, Laurent Gremillard, Anil V. Virkar, David R. Clarke, The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends, Journal of the American Ceramic Society, 92, 9, (2009) 1901-1920 https://doi.org/10.1111/j.1551-2916.2009.03278.x
  5. Arun Suresh, Merrilea J. Mayo, Wallace D. Porter, Claudia J. Rawn, Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia, Journal of the American Ceramic Society, 86, 2, (2003) 360-362 https://doi.org/10.1111/j.1151-2916.2003.tb00025.x
  6. Andrew P.E. York, Tiancun Xiao, Malcom L.H. Green, Brief Overview of the Partial Oxidation of Methane to Synthesis Gas, Topics in Catalysis, 22, 3, (2003) 345-358 https://doi.org/10.1023/a:1023552709642
  7. R. A. Miller, J. L. Smialek, R. G. Garlick, Phase stability in plasma-sprayed, partially stabilized zirconia-yttria, in: A.H. Heuer, L.W. Hobbs (Eds.) Advances in Ceramics. Science and Technology of Zirconia, Columbus, 1981, pp. 241-253
  8. F. Hund, Anomale Mischkristalle im System ZrO2-Y2O3 Kristallbau der Nernst-Stifte, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 55, 5, (1951) 363-366 https://doi.org/10.1002/bbpc.19510550505
  9. Matvei Zinkevich, Thermodynamics of rare earth sesquioxides, Progress in Materials Science, 52, 4, (2007) 597-647 https://doi.org/10.1016/j.pmatsci.2006.09.002
  10. Julian D. Gale, Andrew L. Rohl, The General Utility Lattice Program (GULP), Molecular Simulation, 29, 5, (2003) 291-341 https://doi.org/10.1080/0892702031000104887
  11. Koichi Momma, Fujio Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, 44, 6, (2011) 1272-1276 https://doi.org/10.1107/S0021889811038970
  12. Xi Wei, Wei Pan, Laifei Cheng, Bin Li, Atomistic calculation of association energy in doped ceria, Solid State Ionics, 180, 1, (2009) 13-17 https://doi.org/10.1016/j.ssi.2008.10.019
  13. I. David Brown, The Bond-Valence Method: An Empirical Approach to Chemical Structure and Bonding, in: M. O'Keeffe, A. Navrotsky (Eds.) Industrial Chemistry Library, Elsevier, 1981, pp. 1-30
  14. I. David Brown, Bond Valence Theory, in: I.D. Brown, K.R. Poeppelmeier (Eds.) Bond Valences, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 11-58
  15. I. David Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallographica Section B, 41, 4, (1985) 244-247 https://doi.org/10.1107/S0108768185002063
  16. A. L. Kilo, B. Prijamboedi, M. A. Martoprawiro, Ismunandar, Modeling ionic conduction in γ-Bi2VO5.5, 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, (2011) 330-333 https://doi.org/10.1109/ICICI-BME.2011.6108652
  17. Yoga Trianzar Malik, Atiek Rostika Noviyanti, Dani Gustaman Syarif, Lowered Sintering Temperature on Synthesis of La9.33Si6O26 (LSO) La0.8Sr0.2Ga0.8Mg0.2O2.55 (LSGM) Electrolyte Composite and the Electrical Performance on La0.7Ca0.3MnO3 (LCM) Cathode, Jurnal Kimia Sains dan Aplikasi, 21, 4, (2018) 205-210 https://doi.org/10.14710/jksa.21.4.205-210
  18. Effendy, Ikatan Ionik dan Cacat-Cacat pada Kristal Ionik, Bayumedia Publishing, Malang, 2008
  19. Akram La Kilo, D. Mazza, Pemodelan Konduktivitas Ion dalam Struktur Li2Sc3(PO4)3, Jurnal Manusia dan Lingkungan, 18, 3, (2011) 179-183 https://doi.org/10.22146/jml.18439

Last update:

  1. Evaluation of Structural Stability, Mechanical Properties, and Corrosion Resistance of Magnesia Partially Stabilized Zirconia (Mg-PSZ)

    Dedek Yusuf, Eneng Maryani, Deby Fajar Mardhian, Atiek Rostika Noviyanti. Molecules, 28 (16), 2023. doi: 10.3390/molecules28166054

Last update: 2024-11-22 02:18:39

No citation recorded.