skip to main content

Natural Compounds Activities against SARS-CoV-2 Mpro through Bioinformatics Approaches for Development of Antivirus Candidates

Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Bandung, 40116, Indonesia

Received: 19 May 2020; Revised: 28 Jun 2021; Accepted: 26 Jul 2021; Published: 31 Jul 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Coronavirus infection (COVID-19) caused by SARS-CoV-2 appears as a pandemic that has spread to almost all countries in the world. Antiviral therapy using natural compounds is one alternative approach to overcome this infectious disease. The therapeutic mechanism is proven effective against the main protease (Mpro) of SARS-CoV-2. This research aims to perform bioinformatics studies, including ligand-docking simulations and protein-protein docking simulations, to identify, evaluate, and explore five compounds' activity on SARS-CoV-2 Mpro and their effects against Angiotensin-Converting Enzyme 2 (ACE-2). Protein-ligand docking simulations show kaempferol, flavonol, and their glycosides (Afzelin and Juglanin) and other flavonoids (Quercetin, Naringenin, and Genistein) have a high affinity towards SARS-CoV-2 Mpro. These results were then confirmed using protein-protein docking simulations to observe the ability of five compounds to prevent the attachment of ACE-2 to the active site. Based on the results of the bioinformatics studies, Quercetin has the best affinity, with a binding free energy value of −33.18 kJ/mol. The five compounds are predicted to be able to interact strongly with SARS-CoV-2. The results in this research are useful for further studies in the development of novel anti-infective drugs for COVID-19 that target SARS-CoV-2 Mpro.
Fulltext View|Download
Keywords: COVID-19; SARS-CoV-2 Mpro; ACE-2; natural compounds; bioinformatics study
Funding: Universitas Islam Bandung

Article Metrics:

  1. Chen Wang, Peter W. Horby, Frederick G. Hayden, George F. Gao, A novel coronavirus outbreak of global health concern, The Lancet, 395, 10223, (2020), 470-473 https://doi.org/10.1016/S0140-6736(20)30185-9
  2. Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, Zhenshun Cheng, Ting Yu, Jiaan Xia, Yuan Wei, Wenjuan Wu, Xuelei Xie, Wen Yin, Hui Li, Min Liu, Yan Xiao, Hong Gao, Li Guo, Jungang Xie, Guangfa Wang, Rongmeng Jiang, Zhancheng Gao, Qi Jin, Jianwei Wang, Bin Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 395, 10223, (2020), 497-506 https://doi.org/10.1016/S0140-6736(20)30183-5
  3. David L. Heymann, Data sharing and outbreaks: best practice exemplified, The Lancet, 395, 10223, (2020), 469-470 https://doi.org/10.1016/S0140-6736(20)30184-7
  4. Catrin Sohrabi, Zaid Alsafi, Niamh O'Neill, Mehdi Khan, Ahmed Kerwan, Ahmed Al-Jabir, Christos Iosifidis, Riaz Agha, World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19), International Journal of Surgery, 76, (2020), 71-76 https://doi.org/10.1016/j.ijsu.2020.02.034
  5. Peng Zhou, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, Yan Zhu, Bei Li, Chao-Lin Huang, Hui-Dong Chen, Jing Chen, Yun Luo, Hua Guo, Ren-Di Jiang, Mei-Qin Liu, Ying Chen, Xu-Rui Shen, Xi Wang, Xiao-Shuang Zheng, Kai Zhao, Quan-Jiao Chen, Fei Deng, Lin-Lin Liu, Bing Yan, Fa-Xian Zhan, Yan-Yi Wang, Geng-Fu Xiao, Zheng-Li Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579, 7798, (2020), 270-273 https://doi.org/10.1038/s41586-020-2012-7
  6. Roujian Lu, Xiang Zhao, Juan Li, Peihua Niu, Bo Yang, Honglong Wu, Wenling Wang, Hao Song, Baoying Huang, Na Zhu, Yuhai Bi, Xuejun Ma, Faxian Zhan, Liang Wang, Tao Hu, Hong Zhou, Zhenhong Hu, Weimin Zhou, Li Zhao, Jing Chen, Yao Meng, Ji Wang, Yang Lin, Jianying Yuan, Zhihao Xie, Jinmin Ma, William J. Liu, Dayan Wang, Wenbo Xu, Edward C. Holmes, George F. Gao, Guizhen Wu, Weijun Chen, Weifeng Shi, Wenjie Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, The Lancet, 395, 10224, (2020), 565-574 https://doi.org/10.1016/S0140-6736(20)30251-8
  7. Xing-Yi Ge, Jia-Lu Li, Xing-Lou Yang, Aleksei A. Chmura, Guangjian Zhu, Jonathan H. Epstein, Jonna K. Mazet, Ben Hu, Wei Zhang, Cheng Peng, Yu-Ji Zhang, Chu-Ming Luo, Bing Tan, Ning Wang, Yan Zhu, Gary Crameri, Shu-Yi Zhang, Lin-Fa Wang, Peter Daszak, Zheng-Li Shi, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor, Nature, 503, 7477, (2013), 535-538 https://doi.org/10.1038/nature12711
  8. Michael Letko, Andrea Marzi, Vincent Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nature Microbiology, 5, 4, (2020), 562-569 https://doi.org/10.1038/s41564-020-0688-y
  9. Yu Chen, Hui Cai, Ji Pan, an, Nian Xiang, Po Tien, Tero Ahola, Deyin Guo, Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase, Proceedings of the National Academy of Sciences, 106, 9, (2009), 3484 https://doi.org/10.1073/pnas.0808790106
  10. Alexandra C. Walls, Young-Jun Park, M. Alejandra Tortorici, Abigail Wall, Andrew T. McGuire, David Veesler, Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, 181, 2, (2020), 281-292.e286 https://doi.org/10.1016/j.cell.2020.02.058
  11. Alexandra C. Walls, Xiaoli Xiong, Young-Jun Park, M. Alejandra Tortorici, Joost Snijder, Joel Quispe, Elisabetta Cameroni, Robin Gopal, Mian Dai, Antonio Lanzavecchia, Maria Zambon, Félix A. Rey, Davide Corti, David Veesler, Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion, Cell, 176, 5, (2019), 1026-1039.e1015 https://doi.org/10.1016/j.cell.2018.12.028
  12. Jung-Eun Park, Kun Li, Arlene Barlan, Anthony R. Fehr, Stanley Perlman, Paul B. McCray, Tom Gallagher, Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism, Proceedings of the National Academy of Sciences, 113, 43, (2016), 12262 https://doi.org/10.1073/pnas.1608147113
  13. Kai Wang, Shiqi Xie, Bing Sun, Viral proteins function as ion channels, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808, 2, (2011), 510-515 https://doi.org/10.1016/j.bbamem.2010.05.006
  14. Silvia Schwarz, Kai Wang, Wenjing Yu, Bing Sun, Wolfgang Schwarz, Emodin inhibits current through SARS-associated coronavirus 3a protein, Antiviral Research, 90, 1, (2011), 64-69 https://doi.org/10.1016/j.antiviral.2011.02.008
  15. Eva Rachmi, Basuki Bambang Purnomo, Agustina Tri Endharti, Loeki Enggar Fitri, Identification of afzelin potential targets in inhibiting triple-negative breast cancer cell migration using reverse docking, Porto Biomedical Journal, 5, 6, (2020), e095 https://doi.org/10.1097/j.pbj.0000000000000095
  16. Liang Chen, Ya-Qiong Xiong, Jing Xu, Ji-Peng Wang, Zi-Li Meng, Yong-Qing Hong, Juglanin inhibits lung cancer by regulation of apoptosis, ROS and autophagy induction, Oncotarget, 8, 55, (2017), 93878-93898 https://doi.org/10.18632/oncotarget.21317
  17. Ze-Wu Dong, Yu-Fang Yuan, Juglanin suppresses fibrosis and inflammation response caused by LPS in acute lung injury, International Journal of Molecular Medicine, 41, 6, (2018), 3353-3365 https://doi.org/10.3892/ijmm.2018.3554
  18. A. V. Anand David, R. Arulmoli, S. Parasuraman, Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid, Pharmacognosy Reviews, 10, 20, (2016), 84-89 https://doi.org/10.4103/0973-7847.194044
  19. Bahare Salehi, Patrick Valere Tsouh Fokou, Mehdi Sharifi-Rad, Paolo Zucca, Raffaele Pezzani, Natália Martins, Javad Sharifi-Rad, The Therapeutic Potential of Naringenin: A Review of Clinical Trials, Pharmaceuticals, 12, 1, (2019), 11 https://doi.org/10.3390/ph12010011
  20. V. Tandon, B. Das, Genistein: is the multifarious botanical a natural anthelmintic too?, Journal of Parasitic Diseases, 42, 2, (2018), 151-161 https://doi.org/10.1007/s12639-018-0984-0
  21. Swatantra Kumar, Vimal K. Maurya, Anil K. Prasad, Madan L. B. Bhatt, Shailendra K. Saxena, Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV), VirusDisease, 31, 1, (2020), 13-21 https://doi.org/10.1007/s13337-020-00571-5
  22. Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing Zhang, Xiaofeng Li, Leike Zhang, Chao Peng, Yinkai Duan, Jing Yu, Lin Wang, Kailin Yang, Fengjiang Liu, Rendi Jiang, Xinglou Yang, Tian You, Xiaoce Liu, Xiuna Yang, Fang Bai, Hong Liu, Xiang Liu, Luke W. Guddat, Wenqing Xu, Gengfu Xiao, Chengfeng Qin, Zhengli Shi, Hualiang Jiang, Zihe Rao, Haitao Yang, Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, 582, 7811, (2020), 289-293 https://doi.org/10.1038/s41586-020-2223-y
  23. Fang Li, Wenhui Li, Michael Farzan, Stephen C. Harrison, Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor, Science, 309, 5742, (2005), 1864 https://doi.org/10.1126/science.1116480
  24. David S. Goodsell, Garrett M. Morris, Arthur J. Olson, Automated docking of flexible ligands: Applications of autodock, Journal of Molecular Recognition, 9, 1, (1996), 1-5 https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  25. Garrett M. Morris, David S. Goodsell, Robert S. Halliday, Ruth Huey, William E. Hart, Richard K. Belew, Arthur J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, Journal of Computational Chemistry, 19, 14, (1998), 1639-1662 https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  26. Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L. Chiarotti, Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P. Seitsonen, Alexander Smogunov, Paolo Umari, Renata M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 21, 39, (2009), 395502 http://dx.doi.org/10.1088/0953-8984/21/39/395502
  27. Paolo Giannozzi, Oscar Baseggio, Pietro Bonfà, Davide Brunato, Roberto Car, Ivan Carnimeo, Carlo Cavazzoni, Stefano de Gironcoli, Pietro Delugas, Fabrizio Ferrari Ruffino, Andrea Ferretti, Nicola Marzari, Iurii Timrov, Andrea Urru, Stefano Baroni, Quantum ESPRESSO toward the exascale, The Journal of Chemical Physics, 152, 15, (2020), 154105 https://doi.org/10.1063/5.0005082
  28. Devjani I. Banerjee, Tejas P. Gohil, Interaction of antimicrobial peptide with mycolyl transferase in Mycobacterium tuberculosis, International Journal of Mycobacteriology, 5, 1, (2016), 83-88 https://doi.org/10.1016/j.ijmyco.2015.07.002
  29. Meshari Alazmi, Olaa Motwalli, In silico virtual screening, characterization, docking and molecular dynamics studies of crucial SARS-CoV-2 proteins, Journal of Biomolecular Structure and Dynamics, (2020), 1-11 https://doi.org/10.1080/07391102.2020.1803965
  30. D. Sathya Prabhu, V. Devi Rajeswari, In Silico Docking Analysis of Bioactive Compounds from Chinese Medicine Jinqi Jiangtang Tablet (JQJTT) using Patch Dock, Journal of Chemical and Pharmaceutical Research, 8, 5, (2016), 15-21
  31. Dwi Syah Fitra Ramadhan, Taufik Muhammad Fakih, Arfan Arfan, Activity Prediction of Bioactive Compounds Contained in Etlingera elatior Against the SARS-CoV-2 Main Protease: An In Silico Approach, Borneo Journal of Pharmacy, 3, 4, (2020), 235-242 https://doi.org/10.33084/bjop.v3i4.1634
  32. F. Fitriyani, Taufik Muhammad Fakih, Daryono Hadi Tjahjono, In Silico Studies of Green Tea CatechinsAgainst HER-2 Receptor in Breast Cancer, Current Trends in Biotechnology & Pharmacy, 14, 5, (2020), 194-199 https://doi.org/10.5530/ctbp.2020.4s.23
  33. Vijayakumar Veeraragavan, Radhakrishnan Narayanaswamy, Rameshkumar Chidambaram, Predicting the Biodegradability Nature of Imidazole and Its Derivatives by Modulating Two Histidine Degradation Enzymes (Urocanase and Formiminoglutamase) Activities, Asian Journal of Pharmaceutical and Clinical Research, 10, 11, (2017), 383-386 https://doi.org/10.22159/ajpcr.2017.v10i11.20999

Last update:

  1. In Vitro Immunomodulatory Activity of Virgin Coconut Oil (VCO) with and without Bromelain Enzyme from Pineapple Waste (Ananas comosus (L) Merr)

    Gustria Ernis, Devianri M, Nurul Afiatun Hasanah, Dyah Fitriani, Doni Notriawan, Deni Agus Triawan. Jurnal Kimia Sains dan Aplikasi, 25 (4), 2022. doi: 10.14710/jksa.25.4.155-160

Last update: 2024-04-19 21:54:51

No citation recorded.