skip to main content

Development of a Fast Simultaneous Analysis Method for Determination of Middle Rare-Earth Elements in Monazite Samples

Department of Chemistry, Universitas Padjadjaran, Jatinangor, Sumedang 45363, Indonesia

Received: 22 Jul 2020; Revised: 9 Jun 2021; Accepted: 27 Jul 2021; Published: 31 Jul 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Rare earth elements are a set of seventeen metallic elements, which is an essential part of many high-tech devices. Hence, analysis and/or separation of the rare earth elements from their mineral become crucial. A novel analysis method combining ultraviolet-visible spectroscopic and multivariate analysis was developed to determine middle rare earth elements quickly and simultaneously. The data collected from ultraviolet-visible spectroscopic were analyzed by multivariate analysis. The results showed that the developed method has good accuracy and precision with a detection limit of 1.375 (± 0.012), 0.332 (± 0.004), 42.117 (± 0.200), 1.767 (± 0.011), and 0.576 (± 0.002) ppm, respectively for samarium, europium, gadolinium, terbium, and dysprosium. The interference effect of ammonium iron(II) sulfate hexahydrate, manganese(III) sulfate hydrate, calcium carbonate, sodium carbonate, and lead(II) nitrate were examined. The reliability of the proposed method was evaluated using monazite samples. Conclusively, the developed method was successfully applied to determine the middle rare earth elements in monazite samples.

Fulltext View|Download
Keywords: monazite; middle rare earth elements; multivariate analysis; ultraviolet-visible spectroscopic
Funding: Universitas Padjadjaran

Article Metrics:

Article Info
Section: Research Articles
Language : EN
Statistics:
  1. Husein H. Bahti, Yayah Mulyasih, Anni Anggraeni, Extraction and chromatographic studies on rare-earth elements (REEs) from their minerals: the prospect of REEs production in Indonesia, Proceedings of the 2nd International Seminar on Chemistry, 2011
  2. Michael T. Aide, Christine Aide, Rare Earth Elements: Their Importance in Understanding Soil Genesis, ISRN Soil Science, 2012, (2012), 783876 https://doi.org/10.5402/2012/783876
  3. V. Balaram, V. K. Banakar, K. S. V. Subramanyam, Parijat Roy, M. Satyanarayanan, M. Ram Mohan, S. S. Sawant, Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean, Current Science, 103, 11, (2012), 1334-1338
  4. Beata Zawisza, Katarzyna Pytlakowska, Barbara Feist, Marzena Polowniak, Andrzej Kita, Rafal Sitko, Determination of rare earth elements by spectroscopic techniques: a review, Journal of Analytical Atomic Spectrometry, 26, 12, (2011), 2373-2390 http://dx.doi.org/10.1039/C1JA10140D
  5. B. Smith Hopkins, Chemistry of the Rarer Elements, D.C. Heath, 1923
  6. Na Sui, Kun Huang, Chao Zhang, Ning Wang, Fuchun Wang, Huizhou Liu, Light, Middle, and Heavy Rare-Earth Group Separation: A New Approach via a Liquid–Liquid–Liquid Three-Phase System, Industrial & Engineering Chemistry Research, 52, 17, (2013), 5997-6008 https://doi.org/10.1021/ie4002553
  7. D. W. Shin, J. G. Kim, Study On The Separation And Extraction Of Rare-Earth Elements From The Phosphor Recovered From End Of Life Fluorescent Lamps, Archives of Metallurgy and Materials, 60, 2, (2015), 1257-1260 https://doi.org/10.1515/amm-2015-0109
  8. Anni Anggraeni, Fernando Arianto, Abdul Mutalib, Uji Pratomo, Husein H. Bahti, Fast and simultaneously determination of light and heavy rare earth elements in monazite using combination of ultraviolet-visible spectrophotometry and multivariate analysis, AIP Conference Proceedings, 1848, 1, (2017), 030004 https://doi.org/10.1063/1.4983936
  9. C. A. Morais, V. S. T. Ciminelli, Process development for the recovery of high-grade lanthanum by solvent extraction, Hydrometallurgy, 73, 3, (2004), 237-244 https://doi.org/10.1016/j.hydromet.2003.10.008
  10. V. Balaram, Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials, TrAC Trends in Analytical Chemistry, 15, 9, (1996), 475-486 https://doi.org/10.1016/S0165-9936(96)00058-1
  11. V. Balaram, Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact, Geoscience Frontiers, 10, 4, (2019), 1285-1303 https://doi.org/10.1016/j.gsf.2018.12.005
  12. Jessica T. Dahle, Yuji Arai, Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles, International Journal of Environmental Research and Public Health, 12, 2, (2015), 1253-1278 https://doi.org/10.3390/ijerph120201253
  13. Bryant C. Nelson, Monique E. Johnson, Marlon L. Walker, Kathryn R. Riley, Christopher M. Sims, Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine, Antioxidants, 5, 2, (2016), 15 https://doi.org/10.3390/antiox5020015
  14. Diana Rakhmawaty Eddy, Anni Anggraeni, RETNA PUTRI FAUzIA, Iman Rahayu, Abdul Mutalib, M Lutfi Firdaus, Husein Hernandi Bahti, Gadolinium-Mesoporous Silica as a Potential Magnetic Resonance Imaging Contrast Agents, Oriental Journal of Chemistry, 34, 5, (2018), 2603-2607 http://dx.doi.org/10.13005/ojc/340550
  15. Hardiani Rahmania, Abdul Mutalib, Martalena Ramli, Jutti Levita, Synthesis and stability test of radiogadolinium(III)-DOTA-PAMAM G3.0-trastuzumab as SPECT-MRI molecular imaging agent for diagnosis of HER-2 positive breast cancer, Journal of Radiation Research and Applied Sciences, 8, 1, (2015), 91-99 https://doi.org/10.1016/j.jrras.2014.12.001
  16. Elke Debroye, Svetlana V. Eliseeva, Sophie Laurent, Luce Vander Elst, Stéphane Petoud, Robert N. Muller, Tatjana N. Parac-Vogt, Lanthanide(III) Complexes of Diethylenetriaminepentaacetic Acid (DTPA)–Bisamide Derivatives as Potential Agents for Bimodal (Optical/Magnetic Resonance) Imaging, European Journal of Inorganic Chemistry, 2013, 14, (2013), 2629-2639 https://doi.org/10.1002/ejic.201300196
  17. L. Vander Elst, S. Zhang, A. D. Sherry, S. Laurent, F. Botteman, R. N. Muller, Dy-Complexes as High Field T2 Contrast Agents: Influence of Water Exchange Rates, Academic Radiology, 9, 2, Supplement, (2002), S297-S299 https://doi.org/10.1016/S1076-6332(03)80208-8
  18. Fahimeh Charbgoo, Mansor Bin Ahmad, Majid Darroudi, Cerium oxide nanoparticles: green synthesis and biological applications, International Journal of Nanomedicine, 12, (2017), 1401-1413 https://doi.org/10.2147/IJN.S124855
  19. Yeni Wahyuni Hartati, Leonard Kristofel Letelay, Shabarni Gaffar, Santhy Wyantuti, Husein H. Bahti, Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker, Sensing and Bio-Sensing Research, 27, (2020), 100316 https://doi.org/10.1016/j.sbsr.2019.100316
  20. Liang Pei, Liming Wang, Xinglong Fu, Separation of Eu3+ Using a Novel Dispersion Combined Liquid Membrane with P507 in Kerosene as the Carrier, Chinese Journal of Chemical Engineering, 19, 1, (2011), 33-39 https://doi.org/10.1016/S1004-9541(09)60173-7
  21. Ehsan Zolfonoun, Seyed Reza Yousefi, Simultaneous determination of rare earth elements by ICP OES after on-Line enrichment using multi-walled carbon nanotubes coated cellulose acetate membrane, Journal of the Brazilian Chemical Society, 27, 12, (2016), 2348-2353 https://doi.org/10.5935/0103-5053.20160131
  22. Archana Kumari, Rekha Panda, Manis Kumar Jha, J. Rajesh Kumar, Jin Young Lee, Process development to recover rare earth metals from monazite mineral: A review, Minerals Engineering, 79, (2015), 102-115 https://doi.org/10.1016/j.mineng.2015.05.003
  23. Gordon Haxel, J.B. Hedrick, G.J. Orris, Rare Earth Elements: Critical Resources for High Technology, U.S. Department of the Interior, U.S. Geological Survey, 2002
  24. Jussiane Souza Silva, Alessandra Schneider Henn, Valderi Luiz Dressler, Paola Azevedo Mello, Erico Marlon Moraes Flores, Feasibility of Rare Earth Element Determination in Low Concentration in Crude Oil: Direct Sampling Electrothermal Vaporization-Inductively Coupled Plasma Mass Spectrometry, Analytical Chemistry, 90, 11, (2018), 7064-7071 https://doi.org/10.1021/acs.analchem.8b01460
  25. M. N. Rimskaya-Korsakova, A. V. Dubinin, V. M. Ivanov, Determination of Rare-Earth Elements in Sulfide Minerals by Inductively Coupled Plasma Mass Spectrometry with Ion-Exchange Preconcentration, Journal of Analytical Chemistry, 58, 9, (2003), 870-874 https://doi.org/10.1023/A:1025693302964
  26. K. Kawabata, Y. Kishi, O. Kawaguchi, Y. Watanabe, Y. Inoue, Determination of rare-earth elements by inductively coupled plasma mass spectrometry with ion chromatography, Analytical Chemistry, 63, 19, (1991), 2137-2140 https://doi.org/10.1021/ac00019a013
  27. Kent Wiberg, Anders Hagman, Peter Burén, Sven P. Jacobsson, Determination of the content and identity of lidocaine solutions with UV–visible spectroscopy and multivariate calibration, Analyst, 126, 7, (2001), 1142-1148 https://doi.org/10.1039/B102545G
  28. Sven Sindern, Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS, Physical Sciences Reviews, 2, 2, (2017), 20160066 https://doi.org/10.1515/psr-2016-0066
  29. Jeyne Pricylla Castro, Diego Victor Babos, Edenir Rodrigues Pereira-Filho, Calibration strategies for the direct determination of rare earth elements in hard disk magnets using laser-induced breakdown spectroscopy, Talanta, 208, (2020), 120443 https://doi.org/10.1016/j.talanta.2019.120443
  30. A. Mutalib, H.H. Bahti, S.S. Pada, A rapid, simultaneous and efficient determination of Light and medium rare earth element in artificial matrix using combination of multivariate analysis and high performance liquid chromatography-diode array detecto, Seminar Nasional Universitas Pendidikan Indonesia, Bandung, 2016
  31. Anna Rohani Roida Manurung, Pengayaan Unsur Tanah Jarang Secara Destruksi dan Pengendapan dari Pasir Monasit Bangka, undergraduate thesis, Departement of Chemistry, IPB University, Bogor, 2013
  32. S. M. Xaba, M. Nete, W. Purcell, Concentration of rare earth elements from monazite by selective precipitation, IOP Conference Series: Materials Science and Engineering, 430, (2018), 012006 https://doi.org/10.1088/1757-899X/430/1/012006
  33. Richard G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, John Wiley & Sons, 2003
  34. James N. Miller, Jane Charlotte Miller, Robert D. Miller, Statistics and Chemometrics for Analytical Chemistry, Pearson Education Limited, 2017
  35. Yang Fu, Haicheng Zhang, Wenjie Dong, Wenping Yuan, Comparison of Phenology Models for Predicting the Onset of Growing Season over the Northern Hemisphere, PLOS ONE, 9, 10, (2014), e109544 https://doi.org/10.1371/journal.pone.0109544
  36. Piotr Konieczka, Jacek Namiesnik, Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach, CRC Press, 2009
  37. David A. Armbruster, Terry Pry, Limit of blank, limit of detection and limit of quantitation, The Clinical Biochemist Reviews, 29, Suppl 1, (2008), S49-S52

Last update:

No citation recorded.

Last update:

No citation recorded.