Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia
BibTex Citation Data :
@article{JKSA32084, author = {Eka Pratista and Gunawan Gunawan and Didik Widodo}, title = {Preparation of thin layer CuO from Cu2O using the Spin Coating Method at Various Annealing Temperature and Number of Dripping for Photoelectrochemical Water Splitting}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {23}, number = {11}, year = {2020}, keywords = {Semiconductors; CuO; spin coating; Fehling; photoelectrochemical water breakdown}, abstract = { A thin layer preparation of CuO from Cu 2 O powder using Fehling's solution for photoelectrochemical applications has been performed. The research was focused on studying the effect of annealing temperature and the number of drops on the performance of CuO thin layer semiconductors from Cu 2 O powder prepared by spin coating with a rotation rate of 500 rpm for 15 seconds. The thin layers were treated with annealing with temperature variations of 300°C, 400°C, and 500°C for 1 hour and variations in the number of drops of 10, 20, and 50 drops. The CuO thin layer was tested in a photoelectrochemical process as a photocathode to split water with a simulated light of 1.5 AM (100 mW/cm 2 ). The process of splitting water as a method of producing hydrogen energy by photoelectrochemistry is assisted by semiconductors, such as CuO, in an electrolyte solution to capture photons and drive the water-splitting reactions. Copper (II) Oxide (CuO) is a p-type semiconductor with a band gap of 1.2-2.5 eV, which can be used as a photocathode. The optimum photoelectrochemical measurement results were obtained at an annealing temperature of 400°C and 50 drops with a current density of 0.584 mA/cm 2 at a potential of 0.2 V versus the Reversible Hydrogen Electrode (RHE). The results of the Scanning Electron Microscopy (SEM) analysis show that the morphology of the oxide is spherical. Energy dispersive X-ray (EDX) analysis displays that the sample contained 51.46% and 48.54% of Cu and O, respectively. The X-ray diffraction pattern (XRD) analysis shows that the oxide grain size is 44.137 nm. }, issn = {2597-9914}, pages = {390--395} doi = {10.14710/jksa.23.11.390-395}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/32084} }
Refworks Citation Data :
A thin layer preparation of CuO from Cu2O powder using Fehling's solution for photoelectrochemical applications has been performed. The research was focused on studying the effect of annealing temperature and the number of drops on the performance of CuO thin layer semiconductors from Cu2O powder prepared by spin coating with a rotation rate of 500 rpm for 15 seconds. The thin layers were treated with annealing with temperature variations of 300°C, 400°C, and 500°C for 1 hour and variations in the number of drops of 10, 20, and 50 drops. The CuO thin layer was tested in a photoelectrochemical process as a photocathode to split water with a simulated light of 1.5 AM (100 mW/cm2). The process of splitting water as a method of producing hydrogen energy by photoelectrochemistry is assisted by semiconductors, such as CuO, in an electrolyte solution to capture photons and drive the water-splitting reactions. Copper (II) Oxide (CuO) is a p-type semiconductor with a band gap of 1.2-2.5 eV, which can be used as a photocathode. The optimum photoelectrochemical measurement results were obtained at an annealing temperature of 400°C and 50 drops with a current density of 0.584 mA/cm2 at a potential of 0.2 V versus the Reversible Hydrogen Electrode (RHE). The results of the Scanning Electron Microscopy (SEM) analysis show that the morphology of the oxide is spherical. Energy dispersive X-ray (EDX) analysis displays that the sample contained 51.46% and 48.54% of Cu and O, respectively. The X-ray diffraction pattern (XRD) analysis shows that the oxide grain size is 44.137 nm.
Article Metrics:
Last update:
Effect of Pre-sodium Hydroxide and Post-heat Treatments on Copper Oxide-Based Photocathode: A Perspective on Photoelectrochemical Water Splitting and CO2 Reduction
Last update: 2024-11-13 03:39:24
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.