skip to main content

Freeze-thaw system for thermostable β-Galactosidase isolation from Gedong Songo Geobacillus sp. isolate

1Chemical Engineering Department, Faculty of Engineering, Universitas Serang Raya, Indonesia

2Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia

Received: 18 Aug 2020; Revised: 18 Nov 2020; Accepted: 20 Nov 2020; Published: 30 Nov 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
The effective isolation of intracellular enzymes from thermophilic bacteria is challenging because of their sturdy membrane. On the other hand, the low-cost and nontoxic method is essential for industrial food enzymes. The freeze-thaw cycles using acetone-dry ice as a frozen system was studied for efficient isolation of thermostable b-galactosidase from Geobacillus sp. dYTae-14. This enzyme has been known for application in the dairy industry to reduce the lactose content. In this study, the freeze-thaw method was performed with cycle variations 3, 5, and 7 cycles. Acetone-dry ice (-78°C) is used as a frozen system and boiling water for thawing. The b-galactosidase activity was assayed using ortho-Nitrophenyl-β-galactoside (ONPG) as substrate and protein content determined with the Lowry method. The results show that the most effective freeze-thaw is five cycles. The enzyme’s highest specific activity is 3610.13 units/mg proteins at 40-60 % ammonium sulfate saturation, with a purity value of 2.52.
Fulltext View|Download
Keywords: freeze-thawing; acetone-dry ice; β-galactosidase; ONPG; Geobacillus sp
Funding: Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia

Article Metrics:

  1. Sophie Drouault, Jamila Anba, Gérard Corthier, Streptococcus thermophilus is Able to Produce a β-Galactosidase Active during Its Transit in the Digestive Tract of Germ-Free Mice, Applied and Environmental Microbiology, 68, 2, (2002), 938 https://dx.doi.org/10.1128/AEM.68.2.938-941.2002
  2. Ayşegül Ayyildiz, Characterization of Catalytic Phenotype of beta-Galactosidase from LacI Mutant, E. Coli CSH-36, as a Tool for The Management of Lactose Intolerance, Turkish Journal of Medical Sciences, 29, 5, (1999), 521-528
  3. Aziz Tanriseven, Şenay Doğan, A novel method for the immobilization of β-galactosidase, Process Biochemistry, 38, 1, (2002), 27-30 https://doi.org/10.1016/S0032-9592(02)00049-3
  4. Agustina Lulustyaningati Nurul Aminin, Fida Madayanti Warganegara, Pingkan Aditiawati, Akhmaloka, Simple enrichment and independent cultures to expand bacterial community analysis from Gedong Songo hot spring, Journal of Bioscience and Bioengineering, 106, 2, (2008), 211-214 https://doi.org/10.1263/jbb.106.211
  5. Maulida Indriyaning Ratri, Purbowatiningrum Ria Sarjono, Agustina L. N. Aminin, Studi Filogeni dan Uji Potensi Bioremediasi serta Enzim Termostabil Ekstraseluler Isolat Geobacillus sp. dari Sumber Air Panas Gedong Songo, Jurnal Kimia Sains dan Aplikasi, 12, 2, (2009), 31-39 https://doi.org/10.14710/jksa.12.2.31-39
  6. Mohammed Shehadul Islam, Aditya Aryasomayajula, Ponnambalam R. Selvaganapathy, A Review on Macroscale and Microscale Cell Lysis Methods, Micromachines, 8, 3, (2017), https://doi.org/10.3390/mi8030083
  7. Mark A. Schneegurt, Sophia Y. Dore, Charles F. Kulpa Jr, Direct extraction of DNA from soils for studies in microbial ecology, Current issues in molecular biology, 5, 1, (2003), 1-8 https://doi.org/10.21775/cimb.005.001
  8. Supaporn Sriwongsitanont, Masaharu Ueno, Effect of freeze-thawing process on the size and lamellarity of peg-lipid liposomes, The Open Colloid Science Journal, 4, 1, (2010), 1-6 http://dx.doi.org/10.2174/1876530001104010001
  9. María Dolores Figueroa-Pizano, Itziar Vélaz, María Elisa Martínez-Barbosa, A Freeze-Thawing Method to Prepare Chitosan-Poly(vinyl alcohol) Hydrogels Without Crosslinking Agents and Diflunisal Release Studies, Journal of Visualized Experiments, 155, (2020), 1-9 https://dx.doi.org/10.3791/59636
  10. Runqiang Yang, Qianru Hui, Xiaoyun Feng, Li Feng, Zhenxin Gu, Pei Wang, The mechanism of freeze-thawing induced accumulation of γ-aminobutyric acid in germinated soybean, Journal of the Science of Food and Agriculture, 100, 3, (2020), 1099-1105 https://doi.org/10.1002/jsfa.10118
  11. Feifei Chen, Jianren Ye, Chonlong Chio, Wanhui Liu, Jiyuan Shi, Wensheng Qin, A simplified quick microbial genomic DNA extraction via freeze–thawing cycles, Molecular Biology Reports, 47, 1, (2020), 703-709 https://doi.org/10.1007/s11033-019-05176-w
  12. Chunxue Yang, Wenzong Liu, Zhangwei He, Sangeetha Thangavel, Ling Wang, Aijuan Zhou, Aijie Wang, Freezing/thawing pretreatment coupled with biological process of thermophilic Geobacillus sp. G1: Acceleration on waste activated sludge hydrolysis and acidification, Bioresource Technology, 175, (2015), 509-516 https://doi.org/10.1016/j.biortech.2014.10.154
  13. Ramesh Chander Kuhad, Ajay Singh, Lignocellulose Biotechnology: Current and Future Prospects, Critical Reviews in Biotechnology, 13, 2, (1993), 151-172 https://doi.org/10.3109/07388559309040630
  14. Mark A. Payton, Production of ethanol by thermophilic bacteria, Trends in Biotechnology, 2, 6, (1984), 153-158 https://doi.org/10.1016/0167-7799(84)90032-5
  15. Juergen Wiegel, Lars G. Ljungdahl, Arnold L. Demain, The Importance of Thermophilic Bacteria in Biotechnology, Critical Reviews in Biotechnology, 3, 1, (1985), 39-108 https://doi.org/10.3109/07388558509150780
  16. Ashwini Bhandiwad, A. Joe Shaw, Adam Guss, Anna Guseva, Hubert Bahl, Lee R. Lynd, Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production, Metabolic Engineering, 21, (2014), 17-25 https://doi.org/10.1016/j.ymben.2013.10.012
  17. R. E. Cripps, K. Eley, D. J. Leak, B. Rudd, M. Taylor, M. Todd, S. Boakes, S. Martin, T. Atkinson, Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production, Metabolic Engineering, 11, 6, (2009), 398-408 https://doi.org/10.1016/j.ymben.2009.08.005
  18. A. Joe Shaw, Kara K. Podkaminer, Sunil G. Desai, John S. Bardsley, Stephen R. Rogers, Philip G. Thorne, David A. Hogsett, Lee R. Lynd, Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield, Proceedings of the National Academy of Sciences, 105, 37, (2008), 13769 https://doi.org/10.1073/pnas.0801266105
  19. Douwe van der Veen, Jonathan Lo, Steven D. Brown, Courtney M. Johnson, Timothy J. Tschaplinski, Madhavi Martin, Nancy L. Engle, Robert A. van den Berg, Aaron D. Argyros, Nicky C. Caiazza, Adam M. Guss, Lee R. Lynd, Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways, Journal of Industrial Microbiology & Biotechnology, 40, 7, (2013), 725-734 https://doi.org/10.1007/s10295-013-1275-5
  20. W. Chen, H. Chen, Y. Xia, J. Zhao, F. Tian, H. Zhang, Production, Purification, and Characterization of a Potential Thermostable Galactosidase for Milk Lactose Hydrolysis from Bacillus stearothermophilus, Journal of Dairy Science, 91, 5, (2008), 1751-1758 https://doi.org/10.3168/jds.2007-617
  21. Torbjørn Ølshøj Jensen, Ivan Pogrebnyakov, Kristoffer Bach Falkenberg, Stephanie Redl, Alex Toftgaard Nielsen, Application of the thermostable β-galactosidase, BgaB, from Geobacillus stearothermophilus as a versatile reporter under anaerobic and aerobic conditions, AMB Express, 7, 1, (2017), 169 https://doi.org/10.1186/s13568-017-0469-z
  22. T. A. Brown, Gene Cloning and DNA Analysis: An Introduction, 6th ed., John Wiley & Sons, 2016
  23. Ana O. Tiroli, Carlos H. I. Ramos, Biochemical and biophysical characterization of small heat shock proteins from sugarcane: Involvement of a specific region located at the N-terminus with substrate specificity, The International Journal of Biochemistry & Cell Biology, 39, 4, (2007), 818-831 https://doi.org/10.1016/j.biocel.2007.01.014
  24. Adam L. Mark, Development of a method to generate a soluble substrate for lytic transglycosylases, Department of Molecular and Cellular Biology, The University of Guelph, 2011
  25. T. Baygar, Y. Alparslan, Şükran Çakli, Effects of multiple freezing and refrigerator thawing cycles on the quality changes of sea bass (Dicentrarchus labrax), Iranian Journal of Fisheries Sciences, 12, 2, (2013), 289-300
  26. Oliver Spadiut, Thomas Gundinger, Birgit Pittermann, Christoph Slouka, Spatially Resolved Effects of Protein Freeze-Thawing in a Small-Scale Model Using Monoclonal Antibodies, Pharmaceutics, 12, 382, (2020), 1-15 https://doi.org/10.3390/pharmaceutics12040382
  27. Kari Thyholt, Tomas Isaksson, Differentiation of Frozen and Unfrozen Beef Using Near-Infrared Spectroscopy, Journal of the Science of Food and Agriculture, 73, 4, (1997), 525-532 https://doi.org/10.1002/(SICI)1097-0010(199704)73:4<525::AID-JSFA767>3.0.CO;2-C
  28. Arnaud Hallier, Sylvie Chevallier, Thierry Serot, Carole Prost, Freezing-thawing effects on the colour and texture of European catfish flesh, International Journal of Food Science & Technology, 43, 7, (2008), 1253-1262 https://doi.org/10.1111/j.1365-2621.2007.01601.x
  29. Manasi Puri, Sorina Morar-Mitrica, George Crotts, Douglas Nesta, Evaluating Freeze–Thaw Processes in Biopharmaceutical Development, BioProcess International, 13, 1, (2015), 34-45
  30. Marcia Jorge Castejon, Rosemeire Yamashiro, Camila C. Oliveira, Elaine L. Oliveira, Edilene P. R. Silveira, Carmem Aparecida F. Oliveira, Effect of multiple freeze-thaw cycles on the stability of positive anti-treponemal serum samples, Jornal Brasileiro de Patologia e Medicina Laboratorial, 53, 4, (2017), 246-251 http://dx.doi.org/10.5935/1676-2444.20170038
  31. Muhamad Gazali, Surya Natal Tambing, Kriopreservasi Sel Spermatozoa, Hayati Journal of Biosciences, 9, (2002), 27-32
  32. Brian H. Johnson, Michael H. Hecht, Recombinant Proteins Can Be Isolated from E. coli Cells by Repeated Cycles of Freezing and Thawing, Bio/Technology, 12, 12, (1994), 1357-1360 https://doi.org/10.1038/nbt1294-1357
  33. Marta Wanarska, Piotr Hildebrandt, Józef Kur, A freeze-thaw method for disintegration of Escherichia coli cells producing T7 lysozyme used in pBAD expression systems, Acta Biochimica Polonica, 54, 3, (2007), 671-672 https://doi.org/10.18388/abp.2007_3241
  34. Krishna Prasad Nooralabettu, Optimisation of ammonium sulfate precipitation method to achieve high throughput concentration of crude alkaline phosphatase from Brown shrimp (Metapenaeus monoceros) hepatopancreas, International Journal of Analytical Bio-Science, 2, 1, (2014), 7-16
  35. David L. Nelson, Albert L. Lehninger, Michael M. Cox, Lehninger Principles of Biochemistry, W. H. Freeman, 2005
  36. F.G. Winarno, Enzim pangan, P.T. Gramedia, 1983
  37. Elmira Gheytanchi, Fariba Heshmati, Bahareh Kordestani Shargh, Jamileh Nowroozi, Farahnaz Movahedzadeh, Study on b-galactosidase enzyme produced by isolated lactobacilli from milk and cheese, African Journal of Microbiology Research, 4, 6, (2010), 454-458 https://doi.org/10.5897/AJMR.9000674

Last update:

  1. Optimized Novel Antibacterial Production from Geobacillus kaustophilus Tm6T2 (a) as Treatment for Salmonella typhimurium

    Akeyla Tabina Tawangalun, Ani Melani Maskoen, Emma Rachmawati, Candra Arumimaniyah, Shinta Asarina, Ratu Safitri, Tri Yuliana. INDONESIAN JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY, 30 (3), 2024. doi: 10.24293/ijcpml.v30i3.2202
  2. Isolasi dan Karakterisasi Amilase Termostabildari Geobacillus dYtae-14

    Agustin L.N. Aminin, Yulia Milarsih, Nies Suci Mulyani. Greensphere: Journal of Environmental Chemistry, 2 (2), 2022. doi: 10.14710/gjec.2022.16321

Last update: 2024-11-21 02:21:28

No citation recorded.