skip to main content

Production of Organic Acid and Short-Chain Fatty Acids (SCFA) from Lactic Acid Bacteria Isolate on Oligosaccharide Media

1Research Center for Chemistry, Indonesian Institute of Sciences, Serpong, Tangerang, Indonesia

2Department of Food Science &Technology, IPB University, Bogor, Indonesia

Received: 30 Apr 2021; Revised: 23 Jun 2021; Accepted: 11 Aug 2021; Published: 31 Aug 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

The growth of microorganisms in food, one of which is lactic acid bacteria (LAB), can produce metabolites beneficial to health. It is essential to study the results of LAB metabolism to improve the quality of a functional food product. This study aimed to evaluate the isolates Lactobacillus acidophilus FNCC 0051 and Lactobacillus rhamnosus R23 to metabolize oligosaccharides as a carbon source so that the final fermentation product can benefit health especially in lowering cholesterol. In vitro testing was carried out on MRS media with or without oligosaccharides, either singly or in a combination consisting of galactooligosaccharides (GOS), fructooligosaccharides (FOS), inulin (IN), inulin hydrolyzate (HI), or their combination as prebiotics by adding 0.3 % oxbile (bile salt) and inoculated with 1% v/v LAB isolate culture and incubated at 37°C for 24 hours. The results showed that the main product of oligosaccharide metabolism by L. acidophilus FNCC 0051 and L. rhamnosus R23 produced several organic acids (lactic acid), including short-chain fatty acids (SCFA) (acetic acid, propionic acid, and butyric acid). The single and combined carbon sources affected the proportion of lactic acid and acetic acid produced by L. acidophilus FNCC0051 (p<0.05). However, they did not affect the proportions of propionic acid and butyric acid. While in L. rhamnosus R23 (p<0.05), the presence of a single carbon source significantly affected the proportions of lactic acid, acetic acid, propionic acid, and butyric acid, while the combination of oligosaccharides affected the proportions of lactic acid and butyric acid produced. SCFA is the main product of prebiotic metabolism, but the characteristics of the acid produced have not been identified. The fermentation pattern is thought to be related to molecular weight, chain length, and oligosaccharide structure. Short-chain molecules, such as FOS generally ferment more rapidly than long-chain molecules such as inulin. The results of this study indicate that both isolates can be used as probiotics in the development of symbiotic products with the addition of oligosaccharides, which have a physiological effect in lowering cholesterol levels.

Fulltext View|Download
Keywords: Lactic acid bacteria; oligosaccharides; organic acids; SCFA
Funding: Lembaga Ilmu Pengetahuan Indonesia

Article Metrics:

Article Info
Section: Research Articles
Language : EN
Statistics:
  1. Guo Zhuang, Xiao-Ming Liu, Qiu-Xiang Zhang, Feng-Wei Tian, Hao Zhang, He-Ping Zhang, Wei Chen, Research advances with regards to clinical outcome and potential mechanisms of the cholesterol-lowering effects of probiotics, Clinical Lipidology, 7, 5, (2012), 501-507 https://doi.org/10.2217/clp.12.40
  2. Iswary Letchumanan, M. K. Md Arshad, Subash Gopinath, C. B., Nanodiagnostic Attainments and Clinical Perspectives on C-Reactive Protein: Cardiovascular Disease Risks Assessment, Current Medicinal Chemistry, 28, 5, (2021), 986-1002 http://dx.doi.org/10.2174/0929867327666200123092648
  3. A.Y. Tamime, M. Saarela, M. Wszolek, H. Ghoddousi, D.M. Linares, N.P. Shah, Production and Maintaining Viability of Probiotic Micro-organisms in Dairy Products, in: Probiotic Dairy Products, 2017, https://doi.org/10.1002/9781119214137.ch4
  4. Lulu Pei, Hao Yang, Songkang Qin, Ziyin Yan, Hui Zhang, Yanfang Lan, Aoyun Li, Mudassar Iqbal, Yaoqin Shen, Isolation and Evaluation of Probiotic Potential of Lactic Acid Strains From Healthy Equines for Potential Use in Salmonella Infection, Journal of Equine Veterinary Science, 96, (2021), 103312 https://doi.org/10.1016/j.jevs.2020.103312
  5. Marina Russo, Francesca Paola Giugliano, Paolo Quitadamo, Valeria Mancusi, Erasmo Miele, Annamaria Staiano, Efficacy of a mixture of probiotic agents as complementary therapy for chronic functional constipation in childhood, Italian Journal of Pediatrics, 43, 1, (2017), 24 https://doi.org/10.1186/s13052-017-0334-3
  6. C. Maldonado Galdeano, S. I. Cazorla, J. M. Lemme Dumit, E. Vélez, G. Perdigón, Beneficial Effects of Probiotic Consumption on the Immune System, Annals of Nutrition and Metabolism, 74, 2, (2019), 115-124 https://doi.org/10.1159/000496426
  7. Harsh Mathur, Tom P. Beresford, Paul D. Cotter, Health Benefits of Lactic Acid Bacteria (LAB) Fermentates, Nutrients, 12, 6, (2020), 1679 https://doi.org/10.3390/nu12061679
  8. Muhammad Shahid Riaz Rajoka, Junling Shi, Jing Zhu, Dongyan Shao, Qingsheng Huang, Hui Yang, Mingliang Jin, Capacity of lactic acid bacteria in immunity enhancement and cancer prevention, Applied Microbiology and Biotechnology, 101, 1, (2017), 35-45 https://doi.org/10.1007/s00253-016-8005-7
  9. A. Forsberg, C. E. West, S. L. Prescott, M. C. Jenmalm, Pre- and probiotics for allergy prevention: time to revisit recommendations?, Clinical & Experimental Allergy, 46, 12, (2016), 1506-1521 https://doi.org/10.1111/cea.12838
  10. Fraser L. Collins, Naiomy D. Rios-Arce, Jonathan D. Schepper, Narayanan Parameswaran, Laura R. Mccabe, The Potential of Probiotics as a Therapy for Osteoporosis, in: Bugs as Drugs, 2018, https://doi.org/10.1128/9781555819705.ch9
  11. Hebatullah Abdel-Haleem, Ehab Kheadr, Nassra Dabour, Khaled Elsaadany, Mohamed El-Ziney, Mostafa Zedan, Potential Anti-Hypercholesterolemic Activity and Acidogenic Ability of Probiotic Lactic Acid Bacteria Isolated From Camel Milk, Journal of Applied Sciences Research, 14, (2018), 12-18 https://doi.org/10.22587/jasr.2018.14.5.3
  12. Rosica Valcheva, Levinus A. Dieleman, Prebiotics: Definition and protective mechanisms, Best Practice & Research Clinical Gastroenterology, 30, 1, (2016), 27-37 https://doi.org/10.1016/j.bpg.2016.02.008
  13. Robert W. Hutkins, Janina A. Krumbeck, Laure B. Bindels, Patrice D. Cani, George Fahey, Yong Jun Goh, Bruce Hamaker, Eric C. Martens, David A. Mills, Robert A. Rastal, Elaine Vaughan, Mary Ellen Sanders, Prebiotics: why definitions matter, Current Opinion in Biotechnology, 37, (2016), 1-7 https://doi.org/10.1016/j.copbio.2015.09.001
  14. Thatyane Vidal Fonteles, Sueli Rodrigues, Prebiotic in fruit juice: processing challenges, advances, and perspectives, Current Opinion in Food Science, 22, (2018), 55-61 https://doi.org/10.1016/j.cofs.2018.02.001
  15. Michael G. Gänzle, Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage, Current Opinion in Food Science, 2, (2015), 106-117 https://doi.org/10.1016/j.cofs.2015.03.001
  16. Deshanie Rai, Gyan Rai, Leveraging Bioactives to Support Human Health through the Lifecycle: Scientific Evidence and Regulatory Considerations, in: Functional Food-Improve Health through Adequate Food, IntechOpen, 2017, https://doi.org/10.5772/intechopen.69836
  17. Pascal Gourbeyre, Sandra Denery, Marie Bodinier, Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions, Journal of Leukocyte Biology, 89, 5, (2011), 685-695 https://doi.org/10.1189/jlb.1109753
  18. Karen Windey, Vicky De Preter, Kristin Verbeke, Relevance of protein fermentation to gut health, Molecular Nutrition & Food Research, 56, 1, (2012), 184-196 https://doi.org/10.1002/mnfr.201100542
  19. Joanne Slavin, Fiber and Prebiotics: Mechanisms and Health Benefits, Nutrients, 5, 4, (2013), 1417-1435 https://doi.org/10.3390/nu5041417
  20. Frédéric Moens, Luc De Vuyst, Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes, Beneficial microbes, 8, 3, (2017), 473-490 https://doi.org/10.3920/BM2016.0142
  21. David Ríos-Covián, Patricia Ruas-Madiedo, Abelardo Margolles, Miguel Gueimonde, Clara G. de los Reyes-Gavilán, Nuria Salazar, Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health, Frontiers in Microbiology, 7, 185, (2016), 1-9 https://doi.org/10.3389/fmicb.2016.00185
  22. Ghalia Salem M Eswai, Zaiton Hassan, Maryam AS Abubakr, Factors that Affect the Adhesion of Probiotics Bacteria to Resist Rice Starch, Journal of Biology and Life Science, 4, 1, (2013), 122-134 https://doi.org/10.5296/jbls.v4i1.2162
  23. Dede Saputra, Tati Nurhayati, Teknik Pengawetan Fillet Ikan Nila Merah Dengan Senyawa Anti Bakteri Asal Lactobacillus acidophilus dan Bifido Bacteria Biffidum, ComTech: Computer, Mathematics and Engineering Applications, 5, 2, (2014), 1021-1030 https://doi.org/10.21512/comtech.v5i2.2358
  24. Yen-Ming Wong, Lee-Fong Siow, Effects of heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models, Journal of Food Science and Technology, 52, 5, (2015), 3086-3092 https://doi.org/10.1007/s13197-014-1362-2
  25. Kantida Khunchit, Yuwalee Unpaprom, Rameshprabu Ramaraj, Response Surface Optimization for Thermal Extraction Method of Total Sugar and Reducing Sugar from Golden Rain Tree Pods, The 2nd Maejo-Engineo - International Conference on Renewable Energy (MEICRE 2018), Chiang Mai, Thailand, 2018
  26. Fang Zhang, Xiaomin Hang, Xiaobing Fan, Guijie Li, Hong Yang, Selection and optimization procedure of synbiotic for cholesterol removal, Anaerobe, 13, 5, (2007), 185-192 https://doi.org/10.1016/j.anaerobe.2007.06.001
  27. M.T. Liong, N.P. Shah, Optimization of cholesterol removal, growth and fermentation patterns of Lactobacillus acidophilus ATCC 4962 in the presence of mannitol, fructo-oligosaccharide and inulin: a response surface methodology approach, Journal of Applied Microbiology, 98, 5, (2005), 1115-1126 https://doi.org/10.1111/j.1365-2672.2005.02544.x
  28. Lay-Gaik Ooi, Min-Tze Liong, Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo and in Vitro Findings, International Journal of Molecular Sciences, 11, 6, (2010), 2499-2522 https://doi.org/10.3390/ijms11062499
  29. Delphine M. A. Saulnier, Douwe Molenaar, Willem M. de Vos, Glenn R. Gibson, Sofia Kolida, Identification of Prebiotic Fructooligosaccharide Metabolism in Lactobacillus plantarum WCFS1 through Microarrays, Applied and Environmental Microbiology, 73, 6, (2007), 1753-1765 https://doi.org/10.1128/AEM.01151-06
  30. Lilis Nuraida, Winarti. Siti, Hana, Endang Prangdimurti, Evaluasi In Vitro Terhadap Kemampuan Isolat Bakteri Asam Laktat Asal Air Susu Ibu Untuk Mengasimilasi Kolesterol Dan Mendekonjugasi, Jurnal Teknologi Dan Industri Pangan, 22, 1, (2011), 46-52
  31. Raden Haryo Bimo Setiarto, Nunuk Widhyastuti, Iwan Saskiawan, Rina Marita Safitri, Pengaruh Variasi Konsentrasi Inulin pada Proses Fermentasi oleh L. acidophilus, L. bulgaricus dan S. thermophillus-(The Inulin Variation Concentration Effect in Fermentation Using L. acidophilus, L. bulgaricus and S. thermophilus), Biopropal Industri, 8, 1, (2017), 1-17
  32. Faiza Abdurrahim Dali, Karakterisasi Bakteri Asam Laktat yang Diisolasi Selama Fermentasi Bakasang, Jurnal Pengolahan Hasil Perikanan Indonesia, 16, 2, (2013), 133-141
  33. Yenni Okfrianti, Darwis Darwis, Ayu Pravita, Bakteri Asam Laktat Lactobacillus Plantarum C410LI dan Lactobacillus Rossiae LS6 yang Diisolasi dari Lemea Rejang terhadap Suhu, pH dan Garam Empedu Berpotensi sebagai Prebiotik, Jurnal Ilmu dan Teknologi Kesehatan, 6, 1, (2018), 49-58 https://doi.org/10.32668/jitek.v6i1.108
  34. Małgorzata Ziarno, Cholesterol Uptake and Survival of Lactococcus lactis Strains in Fluids Simulating the Human Stomach and Duodenum, in: Prebiotics and Probiotics-Potential Benefits in Nutrition and Health, IntechOpen, 2019, https://doi.org/10.5772/intechopen.88462
  35. H. Kimoto, S. Ohmomo, T. Okamoto, Cholesterol Removal from Media by Lactococci, Journal of Dairy Science, 85, 12, (2002), 3182-3188 https://doi.org/10.3168/jds.S0022-0302(02)74406-8
  36. Ricardo Pinheiro de Souza Oliveira, Patrizia Perego, Maricê Nogueira de Oliveira, Attilio Converti, Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect, Food Research International, 48, 1, (2012), 21-27 https://doi.org/10.1016/j.foodres.2012.02.012
  37. John H. Cummings, George T. Macfarlane, Hans N. Englyst, Prebiotic digestion and fermentation, The American Journal of Clinical Nutrition, 73, 2, (2001), 415s-420s https://doi.org/10.1093/ajcn/73.2.415s
  38. J Luo, S W Rizkalla, C Alamowitch, A Boussairi, A Blayo, J L Barry, A Laffitte, F Guyon, F R Bornet, G Slama, Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism, The American Journal of Clinical Nutrition, 63, 6, (1996), 939-945 https://doi.org/10.1093/ajcn/63.6.939
  39. Lilis Nuraida, Qamariyah Nurdin, Antung Sima Firlieyanti, Pengembangan Yoghurt berisi Lactobacillus rhamnosus dan Pediococcus pentosaceus dan Viabilitasnya selama Penyimpanan, Jurnal Mutu Pangan: Indonesian Journal of Food Quality, 1, 1, (2014), 47-55
  40. Agustine Susilowati, Puspa Dewi Narrij Lotulung, Yossi Aristiawan, Potensi Umbi Dahlia merah (Dahlia spp.L) dalam perolehan serat inulin sebagai pangan fungsional melalui hidrolisis enzimatik, Seminar Nasional XX Kimia, Jaringan Kerjasama Kimia Indonesia & Yayasan Media Kimia Utama, Yogyakarta, 2012
  41. Jin Seok Moon, So Yeon Shin, Hye Sun Choi, Wooha Joo, Seung Kee Cho, Ling Li, Jung-Hyun Kang, Tae-Jip Kim, Nam Soo Han, In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides, Carbohydrate Polymers, 131, (2015), 50-56 https://doi.org/10.1016/j.carbpol.2015.05.022
  42. Xinyi Wei, Xiaodan Fu, Mengshi Xiao, Zhemin Liu, Lanwei Zhang, Haijin Mou, Dietary galactosyl and mannosyl carbohydrates: In-vitro assessment of prebiotic effects, Food Chemistry, 329, (2020), 127179 https://doi.org/10.1016/j.foodchem.2020.127179

Last update:

No citation recorded.

Last update:

No citation recorded.