1Department of Biology, Universitas Pattimura, Jl. Ir. M. Putuhena - Poka, Ambon 97233, Indonesia
2Department of Physics, Universitas Pattimura, Jl. Ir. M. Putuhena - Poka, Ambon 97233, Indonesia
BibTex Citation Data :
@article{JKSA40296, author = {Synodalia Wattimena and Violin Ririmasse and Amos Killay and Philipus Patty}, title = {Kinetics of Formation and Characterization of Green Silver Nanoparticles of Ficus variegata Leaf Extract}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {25}, number = {1}, year = {2022}, keywords = {Silver nanoparticles; Antibacterial activity; Ficus variegata; Kinetics of Formation}, abstract = { This study aimed to determine the formation rate of silver nanoparticles synthesized using leaf extract of Ficus variegata and characterize their physical, chemical, and antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli . For the formation rate determination, an empirical exponential model was proposed and used to fit the absorbance vs. time data (kinetics data). The surface plasmon resonance wavelength was measured using UV-Vis spectroscopy for physical and chemical characterization. The shape and size of the silver nanoparticles were characterized by transmission electron microscopy (TEM), and organic materials on the surface of the particles were identified by characterizing the associated chemical bonding using FTIR spectroscopy. For antibacterial assays, disc diffusion and spectrophotometric methods were used. The formation rates of the silver nanoparticles were 0.036 per hour or 1.0 x 10 -5 s -1 (slower rate) and 0.767 per hour or 2.1 x 10 -4 s -1 (faster rate). UV-Vis absorption spectrum indicated the surface plasmon resonance peak at 415 nm. Silver nanoparticles formed mainly were spherical, with a mean diameter of 26.5±0.7 nm. The FTIR spectrum indicated the presence of organic materials on the surface of the silver nanoparticles, which indicated the involvement of the extract as a reducing agent in particles formation. Antibacterial assay showed that synthesized silver nanoparticles inhibited the growth of both S. aureus and E. coli . The results from the disc diffusion method imply that the particles inhibited the growth of E. coli more effectively than S. aureus . }, issn = {2597-9914}, pages = {34--40} doi = {10.14710/jksa.25.1.34-40}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/40296} }
Refworks Citation Data :
This study aimed to determine the formation rate of silver nanoparticles synthesized using leaf extract of Ficus variegata and characterize their physical, chemical, and antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. For the formation rate determination, an empirical exponential model was proposed and used to fit the absorbance vs. time data (kinetics data). The surface plasmon resonance wavelength was measured using UV-Vis spectroscopy for physical and chemical characterization. The shape and size of the silver nanoparticles were characterized by transmission electron microscopy (TEM), and organic materials on the surface of the particles were identified by characterizing the associated chemical bonding using FTIR spectroscopy. For antibacterial assays, disc diffusion and spectrophotometric methods were used. The formation rates of the silver nanoparticles were 0.036 per hour or 1.0 x 10-5 s-1 (slower rate) and 0.767 per hour or 2.1 x 10-4 s-1 (faster rate). UV-Vis absorption spectrum indicated the surface plasmon resonance peak at 415 nm. Silver nanoparticles formed mainly were spherical, with a mean diameter of 26.5±0.7 nm. The FTIR spectrum indicated the presence of organic materials on the surface of the silver nanoparticles, which indicated the involvement of the extract as a reducing agent in particles formation. Antibacterial assay showed that synthesized silver nanoparticles inhibited the growth of both S. aureus and E. coli. The results from the disc diffusion method imply that the particles inhibited the growth of E. coli more effectively than S. aureus.
Article Metrics:
Last update:
Green Synthesis of Copper Nanoparticles Using Red Dragon Fruit (Hylocereus polyrhizus) Extract and Its Antibacterial Activity for Liquid Disinfectant
The Effect of Microwave Power in the Green Synthesis of Silver Nanoparticles Using Citrus sinensis Peels Extract
Antibacterial and antioxidant properties of bio-silver nanoparticles synthesized using leaf extract of Gandaria (Bouea macrophylla Griff)
Last update: 2024-12-27 04:40:44
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.