skip to main content

Optimization and characterization of biodegradable film based on glutinous flour/glycerol/chitosan/ZnO using Response Surface Methodology (RSM) - Central Composite Design (CCD)

Department of Chemical Engineering, Universitas Diponegoro, Jl.Prof Sudarto,SH, Tembalang, Semarang 50275, Indonesia

Received: 16 Aug 2022; Revised: 20 Dec 2022; Accepted: 26 Dec 2022; Available online: 26 Dec 2022; Published: 12 Jan 2023.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Starch-based films are considered more competitive than petroleum because they are renewable, environmentally friendly, and easily degraded. The film in this study was fabricated from white glutinous flour, glycerol, chitosan, and ZnO through a starch gelatinization process. Chitosan content ranges from 2-4% (w/v), ZnO 4-8% of the dry weight of solid, and glycerol 15-45% of the dry weight of solids with a mass of white glutinous flour as much as 3 g was determined. Optimization and determination of running variables based on Central Composite Design. Response variables such as tensile strength, elongation, and water absorption were observed as important parameters in applying film as packaging materials. The Design Expert program recommended 2 g of chitosan: 8 % ZnO: 36.02% glycerol as the best composition in film fabrication, which aims to obtain maximum tensile strength and elongation, as well as minimum water absorption with the maximum desirability value (0.660). The predicted response values under optimal conditions by RSM were 3.68 MPa for tensile strength, 86.79% for elongation, and 268.09% for water absorption. The actual response has a tensile strength of 3.31 MPa, elongation of 83.5%, and water absorption of 320%. On average, a white glutinous flour/glycerol/chitosan/ZnO-based film required ± 45 days to degrade in the soil completely.
Fulltext View|Download
Keywords: biodegradable film; central composite design; chitosan; optimization; white glutinous flour; ZnO
Funding: Universitas Diponegoro

Article Metrics:

  1. Indra Mawardi, Hasrin Lubis, Proses Manufaktur Plastik dan Komposit, Penerbit Andi, 2019
  2. Temoor Ahmed, Muhammad Shahid, Farrukh Azeem, Ijaz Rasul, Asad Ali Shah, Muhammad Noman, Amir Hameed, Natasha Manzoor, Irfan Manzoor, Sher Muhammad, Biodegradation of plastics: current scenario and future prospects for environmental safety, Environmental Science and Pollution Research, 25, 8, (2018), 7287-7298 https://doi.org/10.1007/s11356-018-1234-9
  3. Amine Bendaoud, Yvan Chalamet, Effects of relative humidity and ionic liquids on the water content and glass transition of plasticized starch, Carbohydrate Polymers, 97, 2, (2013), 665-675 https://doi.org/10.1016/j.carbpol.2013.05.060
  4. Badan Pusat Statistik, Luas panen padi pada tahun 2020 mengalami penurunan dibandingkan tahun 2019 sebesar 0,19 persen dan produksi padi pada tahun 2020 mengalami kenaikan dibandingkan tahun 2019 sebesar 0,08 persen, Badan Pusat Statistik, 2021
  5. Shuang Qiu, Alireza Abbaspourrad, Olga I. Padilla-Zakour, Changes in the glutinous rice grain and physicochemical properties of its starch upon moderate treatment with pulsed electric field, Foods, 10, 2, (2021), 395 https://doi.org/10.3390/foods10020395
  6. Haryanto Haryanto, Andriani Eka Saputri, Pengembangan bioplastik dari tepung tapioka dan tepung beras ketan putih, Techno, 17, 2, (2017), 104-110
  7. Samsul Aripin, Bungaran Saing, Elvi Kustiyah, Studi pembuatan bahan alternatif plastik biodegradable dari pati ubi jalar dengan plasticizer gliserol dengan metode melt intercalation, Jurnal Teknik Mesin Mercu Buana, 6, 2, (2017), 79-84 http://dx.doi.org/10.22441/jtm.v6i2.1185
  8. Eldo Sularto Marbun, Sintesis bioplastik dari pati ubi jalar menggunakan penguat logam zno dan penguat alami selulosa, Teknik Kimia, Universitas Indonesia, Depok, 2012
  9. Rolanda Adora Soegiarto, Aplikasi kitosan sebagai pengawet alami dari kulit udang dogol (Metapenaeus monoceros Fab.) pada sosis daging sapi, Biologi, Universitas Atma Jaya Yogyakarta, Yogyakarta, 2013
  10. Zhong Lin Wang, Towards self‐powered nanosystems: from nanogenerators to nanopiezotronics, Advanced Functional Materials, 18, 22, (2008), 3553-3567 https://doi.org/10.1002/adfm.200800541
  11. Chairul Amni, Marwan Marwan, Mariana Mariana, Pembuatan bioplastik dari pati ubi kayu berpenguat nano serat jerami dan ZnO, Jurnal Litbang Industri, 5, 2, (2015), 91-99 http://dx.doi.org/10.24960/jli.v5i2.670.91-99
  12. Candy del Carmen Gamboa-Solana, Martha Gabriela Chuc-Gamboa, Fernando Javier Aguilar-Pérez, Juan Valerio Cauich-Rodríguez, Rossana Faride Vargas-Coronado, David Alejandro Aguilar-Pérez, José Rubén Herrera-Atoche, Neith Pacheco, Zinc Oxide and Copper Chitosan Composite Films with Antimicrobial Activity, Polymers, 13, 22, (2021), 3861 https://doi.org/10.3390/polym13223861
  13. Yolanda Harnike Putri Wardani, Suyatno Sutoyo, Mechanical Properties Characterization of The Biodegradable Plastic Made from Composite of HDPE (High Density Polyethylene) and Gembolo (Dioscorea bulbifera L.) Starch, Seminar Nasional Kimia-National Seminar on Chemistry (SNK 2018), 2018 https://dx.doi.org/10.2991/snk-18.2018.24
  14. Raymond H. Myers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, 2016
  15. Tijana Rakić, Irena Kasagić-Vujanović, Marko Jovanović, Biljana Jančić-Stojanović, Darko Ivanović, Comparison of full factorial design, central composite design, and box-behnken design in chromatographic method development for the determination of fluconazole and its impurities, Analytical Letters, 47, 8, (2014), 1334-1347 https://doi.org/10.1080/00032719.2013.867503
  16. Haeil Ahn, Central composite design for the experiments with replicate runs at factorial and axial points, in: M. Gen, K. J. Kim, X. Huang, Y. Hiroshi (Eds.) Industrial Engineering, Management Science and Applications 2015, Springer, Berlin, 2015, https://doi.org/10.1007/978-3-662-47200-2_101
  17. Abd Elaziz Sarrai, Salah Hanini, Nachida Kasbadji Merzouk, Djilali Tassalit, Tibor Szabó, Klára Hernádi, László Nagy, Using central composite experimental design to optimize the degradation of tylosin from aqueous solution by photo-fenton reaction, Materials, 9, 6, (2016), 428 https://doi.org/10.3390/ma9060428
  18. C López-Díaz de León, I. Olivas-Armendáriz, E. Duarte-Fierro, E. Flores-Gerardo, J. Hernandez-Paz, M. Hernández-González, M. Chavarría-Gaytán, C. Rodríguez-González, Development of chitosan/starch films reinforced with ZnO nanostructures from waste batteries, Journal of Materials and Environmental Science, 11, 11, (2020), 1755-1766
  19. Ruizhe Lian, Jinxing Cao, Xiaohong Jiang, Aleksandr V. Rogachev, Physicochemical, antibacterial properties and cytocompatibility of starch/chitosan films incorporated with zinc oxide nanoparticles, Materials Today Communications, 27, (2021), 102265 https://doi.org/10.1016/j.mtcomm.2021.102265
  20. Xiuting Hu, Xue Jia, Chaohui Zhi, Zhengyu Jin, Ming Miao, Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles, Carbohydrate Polymers, 210, (2019), 204-209 https://doi.org/10.1016/j.carbpol.2019.01.043
  21. ASTM, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, D882-02, 2010
  22. ASTM, Standard Test Method for Water Absorption of Plastics, D570–9, 2019
  23. Bidayatul Armynah, Rahma Anugrahwidya, Dahlang Tahir, Composite cassava starch/chitosan/Pineapple Leaf Fiber (PALF)/Zinc Oxide (ZnO): Bioplastics with high mechanical properties and faster degradation in soil and seawater, International Journal of Biological Macromolecules, 213, (2022), 814-823 https://doi.org/10.1016/j.ijbiomac.2022.06.038
  24. Henry C. Obasi, Isaac O. Igwe, Innocent C. Madufor, Effect of soil burial on tensile properties of polypropylene/plasticized cassava starch blends, Advances in Materials Science and Engineering, 2013, (2013), 326538 https://doi.org/10.1155/2013/326538
  25. Heidi Jacobs, Jan A. Delcour, Hydrothermal modifications of granular starch, with retention of the granular structure: A review, Journal of Agricultural and Food Chemistry, 46, 8, (1998), 2895-2905 https://doi.org/10.1021/jf980169k
  26. Heny Herawati, Potensi pengembangan produk pati tahan cerna sebagai pangan fungsional, Jurnal Litbang Pertanian, 30, 1, (2011), 31-39
  27. Tianyu Jiang, Qingfei Duan, Jian Zhu, Hongsheng Liu, Long Yu, Starch-based biodegradable materials: Challenges and opportunities, Advanced Industrial and Engineering Polymer Research, 3, 1, (2020), 8-18 https://doi.org/10.1016/j.aiepr.2019.11.003
  28. M. K. Marichelvam, Mohammad Jawaid, Mohammad Asim, Corn and rice starch-based bio-plastics as alternative packaging materials, Fibers, 7, 4, (2019), 32 https://doi.org/10.3390/fib7040032
  29. Satar Mahdevari, Mohammad Hayati, Finite-difference based response surface methodology to optimize tailgate support systems in longwall coal mining, Scientific Reports, 11, (2021), 2321 https://doi.org/10.1038/s41598-021-82104-8
  30. Niyilola Braima, Ambrose Nworah Anozie Maryam, Oludare Johnson Odejobi, Utilization of Response Surface Methodology (RSM) in the Optimization of Crude Oil Refinery Process, New Port-Harcourt Refinery, Journal of Multidisciplinary Engineering Science and Technology, 3, 3, (2016), 4361-4369
  31. Iraj Karimi Sani, Sajad Pirsa, Şeref Tağı, Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method, Polymer Testing, 79, (2019), 106004 https://doi.org/10.1016/j.polymertesting.2019.106004
  32. You-Jin Jeon, Pyo-Jam Park, Se-Kwon Kim, Antimicrobial effect of chitooligosaccharides produced by bioreactor, Carbohydrate Polymers, 44, 1, (2001), 71-76 https://doi.org/10.1016/S0144-8617(00)00200-9
  33. Sung-Tao Lee, Fwu-Long Mi, Yu-Ju Shen, Shin-Shing Shyu, Equilibrium and kinetic studies of copper (II) ion uptake by chitosan-tripolyphosphate chelating resin, Polymer, 42, 5, (2001), 1879-1892 https://doi.org/10.1016/S0032-3861(00)00402-X
  34. H. M. Efendi, Modifikasi dan Penggunaan Pemlastis Turunan Asam Oleat pada Matriks Polivinil Klorida, Universitas Sumatera Utara, Medan, 2001
  35. Lutfi Aditya Nugraha, Rita Dewi Triastianti, Diananto Prihandoko, Uji perbandingan plastik biodegradabel pati singkong dan pati kentang terhadap kekuatan dan pemanjangan, Jurnal Rekayasa Lingkungan, 20, 1, (2020), https://doi.org/10.37412/jrl.v20i1.38
  36. Samuel Elean, Chairul Saleh, Noor Hindryawati, The Manufacture of Biodegradable Film from Cempedak Seed Starch and Carboxy Methyl Cellulose with The Addition of Glycerol, Jurnal Atomik, 03, 2, (2018), 122-126
  37. Yu Li, Yu Zhou, Zhouli Wang, Rui Cai, Tianli Yue, Lu Cui, Preparation and Characterization of Chitosan–Nano-ZnO Composite Films for Preservation of Cherry Tomatoes, Foods, 10, 12, (2021), 3135 https://doi.org/10.3390/foods10123135
  38. Leila Abolghasemi Fakhri, Babak Ghanbarzadeh, Jalal Dehghannya, Said Dadashi, Central composite design based statistical modeling for optimization of barrier and thermal properties of polystyrene based nanocomposite sheet for packaging application, Food Packaging and Shelf Life, 30, (2021), 100725 https://doi.org/10.1016/j.fpsl.2021.100725
  39. Ilana Perelshtein, Elena Ruderman, Nina Perkas, Tzanko Tzanov, Jamie Beddow, Eadaoin Joyce, Timothy J. Mason, María Blanes, Korina Mollá, Anitha Patlolla, Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity, Journal of Materials Chemistry B, 1, 14, (2013), 1968-1976 https://doi.org/10.1039/C3TB00555K
  40. Taíla V. de Oliveira, Pedro Augusto V. de Freitas, Cícero C. Pola, José Osvaldo R. da Silva, Lina Daniela A. Diaz, Sukarno Olavo Ferreira, Nilda de F. F. Soares, Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers, Food Packaging and Shelf Life, 24, (2020), 100459 https://doi.org/10.1016/j.fpsl.2019.100459
  41. Jelena Jovanović, Jovana Ćirković, Aleksandar Radojković, Dragosav Mutavdžić, Gordana Tanasijević, Kristina Joksimović, Gordana Bakić, Goran Branković, Zorica Branković, Chitosan and pectin-based films and coatings with active components for application in antimicrobial food packaging, Progress in Organic Coatings, 158, (2021), 106349 https://doi.org/10.1016/j.porgcoat.2021.106349
  42. Andreas Jabs, Determination of secondary structure in proteins by fourier transform infrared spectroscopy (FTIR), Jena Library of Biological Macromolecules, (2005)
  43. Nataliya E. Kochkina, Nikolay D. Lukin, Structure and properties of biodegradable maize starch/chitosan composite films as affected by PVA additions, International Journal of Biological Macromolecules, 157, (2020), 377-384 https://doi.org/10.1016/j.ijbiomac.2020.04.154
  44. Renata Dobrucka, Jolanta Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi Journal of Biological Sciences, 23, 4, (2016), 517-523 https://doi.org/10.1016/j.sjbs.2015.05.016
  45. Annemette Kjeldsen, Marcus Price, Charlotte Lilley, Ewa Guzniczak, Ian Archer, A review of standards for biodegradable plastics, Industrial Biotechnology Innovation Centre, 33, 1, (2018)
  46. Wiwik Pudjiastuti, Arie Listyarini, Sudirman, Polimer Nano Komposit sebagai Master Batch Polimer Biodegradable untuk Kemasan Makanan, Journal of Industrial Research (Jurnal Riset Industri), 6, 1, (2012), 51-60
  47. Päivi Myllärinen, Riitta Partanen, Jukka Seppälä, Pirkko Forssell, Effect of glycerol on behaviour of amylose and amylopectin films, Carbohydrate Polymers, 50, 4, (2002), 355-361 https://doi.org/10.1016/S0144-8617(02)00042-5

Last update:

No citation recorded.

Last update: 2024-11-22 02:32:01

No citation recorded.