skip to main content

Utilization of Nanocellulose from Red Onion Skins as Nanofiller in Polyvinyl Alcohol-Based Film

1Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Surabaya, Surabaya, Indonesia

Received: 5 Aug 2023; Revised: 6 Nov 2023; Accepted: 6 Nov 2023; Published: 19 Feb 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Research has been conducted to apply nanocellulose from red onion skins as a nanofiller on polyvinyl alcohol (PVA) based films. It aims to determine the effect of red onion skin nanocellulose on PVA-based films in improving mechanical and biodegradation properties. Nanocellulose was produced from the skin of red onions through an acid hydrolysis process with a temperature of 45°C for 40 minutes. The resulting nanocellulose was characterized using FTIR, XRD, and SEM. Nanocellulose, with concentrations of 10%, 20%, 30%, 40%, and 50%, was then used as a filler in PVA-based films. The results were characterized to determine the mechanical and biodegradation properties. The nanocellulose obtained from the red onion skins in this study was 12.615 nm with a crystallinity index of 78.668%. The optimum tensile strength was achieved at 14.7573 MPa in PVA-based film filled with 20% nanocellulose extracted from red onion skins. The greatest elongation percentage of 118.3265% was observed in a PVA-based film containing 50% nanocellulose from red onion skins. Moreover, optimal biodegradation occurred in PVA films incorporating 50% nanocellulose from red onion skins, resulting in a weight loss of 12.86% over 14 days.
Fulltext View|Download
Keywords: Nanocellulose; red onion skins; acid hydrolysis; PVA film

Article Metrics:

  1. A. Alagarasi, in: Introduction to nanomaterials, Indian Institute of Technology Madras, 2013, p. 1.1-1.33
  2. Michael Ioelovich, Optimal conditions for isolation of nanocrystalline cellulose particles, Nanoscience and Nanotechnology, 2, 2, (2012), 9-13 https://doi.org/10.5923/j.nn.20120202.03
  3. E. Fortunati, M. Peltzer, I. Armentano, L. Torre, A. Jiménez, J. M. Kenny, Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites, Carbohydrate Polymers, 90, 2, (2012), 948-956 https://doi.org/10.1016/j.carbpol.2012.06.025
  4. Jeevan Prasad Reddy, Jong-Whan Rhim, Extraction and Characterization of Cellulose Microfibers from Agricultural Wastes of Onion and Garlic, Journal of Natural Fibers, 15, 4, (2018), 465-473 https://doi.org/10.1080/15440478.2014.945227
  5. Nurhenu Karuniastuti, Bahaya plastik terhadap kesehatan dan lingkungan, Swara Patra: Majalah Ilmiah PPSDM Migas, 3, 1, (2013), 6-14
  6. Di Liu, Qibo Bian, Yan Li, Yaru Wang, Aimin Xiang, Huafeng Tian, Effect of oxidation degrees of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films, Composites Science and Technology, 129, (2016), 146-152 https://doi.org/10.1016/j.compscitech.2016.04.004
  7. B. L. Peng, N. Dhar, H. L. Liu, K. C. Tam, Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective, The Canadian Journal of Chemical Engineering, 89, 5, (2011), 1191-1206 https://doi.org/10.1002/cjce.20554
  8. Julie Chandra C.S, Neena George, Sunil K. Narayanankutty, Isolation and characterization of cellulose nanofibrils from arecanut husk fibre, Carbohydrate Polymers, 142, (2016), 158-166 https://doi.org/10.1016/j.carbpol.2016.01.015
  9. Behboud Mohebby, Application of ATR infrared spectroscopy in wood acetylation, Journal of Agricultural Science and Technology, 10, (2008), 253-259
  10. Adamu Abdulhameed, Harun M. Mbuvi, Evans O. Changamu, Francis M. Maingi, Microwave synthesis of carboxymethylcellulose (CMC) from Rice Husk, IOSR Journal of Applied Chemistry, 12, 2, (2020), 33-42
  11. Budiman Anwar, Bunbun Bundjali, I Made Arcana, Isolasi Nanokristalin Selulosa Bakterial dari Jus Limbah Kulit Nanas: Optimasi Waktu Hidrolisis, Jurnal Kimia dan Kemasan, 38, 1, (2016), 7-14 https://doi.org/10.24817/jkk.v38i1.1973
  12. Benjamin Lindner, Loukas Petridis, Paul Langan, Jeremy C. Smith, Determination of cellulose crystallinity from powder diffraction diagrams, Biopolymers, 103, 2, (2015), 67-73 https://doi.org/10.1002/bip.22555
  13. Masruroh, Algafari Bakti Manggara, Titus Papilaka, Rachmat Triandi T., Penentuan ukuran Kristal (crystallite size) lapisan tipis PZT dengan metode XRD melalui pendekatan persamaan Debye Scherrer, Erudio Journal of Educational Innovation, 1, 2, (2013), 24-29
  14. Feng Jiang, You-Lo Hsieh, Chemically and mechanically isolated nanocellulose and their self-assembled structures, Carbohydrate Polymers, 95, 1, (2013), 32-40 https://doi.org/10.1016/j.carbpol.2013.02.022
  15. Dong Tian, Jinguang Hu, Jie Bao, Richard P. Chandra, Jack N. Saddler, Canhui Lu, Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites, Biotechnology for Biofuels, 10, (2017), 192 https://doi.org/10.1186/s13068-017-0876-z
  16. Ashraf Chaker, Sabrine Alila, Pere Mutjé, Manuel Rei Vilar, Sami Boufi, Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps, Cellulose, 20, (2013), 2863-2875 https://doi.org/10.1007/s10570-013-0036-y
  17. Tengku Rachmi Hidayani, Elda Pelota, Dyah Nirmala, Pembuatan dan Karakterisasi Plastik Biodegradable dari Limbah Polipropilena dan Pati Biji Durian dengan Penambahan Maleat Anhidrida Sebagai Agen Pengikat Silang, Jurnal Kimia dan Kemasan, 39, 1, (2017), 17-24 http://dx.doi.org/10.24817/jkk.v39i1.2027
  18. J. M. Krochta, C. de Mulder-Johnston, Edible and biodegradable polymer films: challenges and opportunities, document title: Food Technology (Chicago), 51, 2, (1997), 61–74
  19. Liska Triyastiti, Isolasi Nanokristal Selulosa dari Pelepah Pohon Salak sebagai Filler pada Film Berbasis Polivinil Alkohol (PVA), Program Studi Kimia, UIN Sunan Kalijaga, Yogyakarta, 2017
  20. F. W. Billmeyer, Textbook of Polymer Science, Kobunshi, 12, 3, (1963), 240-251 https://doi.org/10.1295/kobunshi.12.240
  21. Rega Satria Wijaya, Firra Rosariawari, Edi Mulyadi, Plastik Biodegradable dari Limbah Kerak Nira, Jurnal Envirotek, 10, 1, (2018), 20-27 https://doi.org/10.33005/envirotek.v10i1.1164
  22. Alireza Kharazmi, Nastaran Faraji, Roslina Mat Hussin, Elias Saion, W. Mahmood Mat Yunus, Kasra Behzad, Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach, Beilstein Journal of Nanotechnology, 6, (2015), 529-536 https://doi.org/10.3762/bjnano.6.55
  23. Heru Setiawan, Reza Faizal, Aziz Amrullah, Penentuan kondisi optimum modifikasi konsentrasi plasticizer sorbitol PVA pada sintesa plastik biodegradable berbahan dasar pati sorgum dan chitosan limbah kulit udang, Sainteknol: Jurnal Sains dan Teknologi, 13, 1, (2015), 29-38
  24. Ali Abdulkhani, Ebrahim Hojati Marvast, Alireza Ashori, Yahya Hamzeh, Ali Naghi Karimi, Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride, International Journal of Biological Macromolecules, 62, (2013), 379-386 https://doi.org/10.1016/j.ijbiomac.2013.08.050
  25. Evi Savitri Iriani, Kendri Wahyuningsih, Titi Candra Sunarti, Asep Wawan Permana, Sintesis Nanoselulosa dari Serat Nanas dan Aplikasinya Sebagai Nanofiller pada Film Berbasis Polivinil Alkohol, Jurnal Penelitian Pascapanen Pertanian, 12, 1, (2015), 11-19
  26. Zhijian Tan, Yongjian Yi, Hongying Wang, Wanlai Zhou, Yuanru Yang, Chaoyun Wang, in: Applied Sciences, 2016, p. 147 https://doi.org/10.3390/app6050147
  27. Dewi Sriana S. Pane, Idral Amri, Zultiniar Zultiniar, Pengaruh Konsentrasi Filler Serat Daun Nanas (Ananas comosus) dan PVA (Polivinil Alkohol) pada Sintesis Bioplastik dari Pati Biji Nangka, Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains, 6, 1, (2019), 1-7
  28. Maryam Maryam, Dedy Rahmad, Yunizurwan Yunizurwan, Sintesis Mikro Selulosa Bakteri Sebagai Penguat (Reinforcement) Pada Komposit Bioplastik dengan Matriks PVA (Polyvinyl Alcohol), Jurnal Kimia dan Kemasan, 41, 2, (2019), 110-118 http://dx.doi.org/10.24817/jkk.v41i2.4055
  29. Samsul Aripin, Bungaran Saing, Elvi Kustiyah, Studi pembuatan bahan alternatif plastik biodegradable dari pati ubi jalar dengan plasticizer gliserol dengan metode melt intercalation, Jurnal Teknik Mesin (JTM), 6, 2, (2017), 79-84
  30. Sri Hidayati, None Zulferiyenni, Wisnu Satyajaya, Optimasi pembuatan biodegradable film dari selulosa limbah padat rumput laut Eucheuma cottonii dengan penambahan gliserol, kitosan, cmc dan tapioka, Jurnal Pengolahan Hasil Perikanan Indonesia, 22, 2, (2019), 340-354

Last update:

No citation recorded.

Last update: 2025-01-03 05:08:20

No citation recorded.