skip to main content

Effects of Temperature, Molecular Weight, and Non-Solvent Variation on the Physical Properties of PVDF Membranes Prepared through Immersion Precipitation

1Master Program of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia

2Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia

3Research Center for Chemistry, National Research and Innovation Agency (BRIN), PUSPIPTEK Area Serpong, Tangerang Selatan, Banten, Indonesia

Received: 27 Oct 2023; Revised: 22 Jan 2024; Accepted: 6 Feb 2024; Published: 19 Feb 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Research on porous membrane technology is proliferating, especially in the process of fabrication of membranes. Different methods in membrane fabrication can affect the physical and chemical properties of the produced membrane. This study aims to investigate the influence of temperature, molecular weight, and non-solvent type on the physical-chemical properties of PVDF membranes. The membrane was produced by the immersion precipitation method with varying PVDF molecular weights of 64 kDa, 352 kDa (Solef 1010), 534 kDa, and 573 kDa (Solef 1015); non-solvent variations of alcohol (methanol, ethanol, isopropyl alcohol, and butanol); and drying temperature variations of 40, 50, and 60°C. The produced membranes were analyzed using ATR-FTIR, XRD, TGA, DSC, and SEM, and their wettability properties were evaluated using water contact angles. The optimal drying temperature for membrane production was 60°C. The ATR-FTIR data showed that molecular weight impacted membrane structure, where PVDF MW 534 kDa membrane had the highest percentage of β phase (77.47%). Non-solvent changes also affected membrane structure; PVDF Solef 1010 with non-solvent isopropyl alcohol had the highest percentage of β phase (67.45%). This is supported by the XRD diffractogram that displayed peaks at 2θ values between 20.24° and 20.66°, indicating the presence of a phase β PVDF. The thermal analysis exhibited three stages of degradation for Solef 1010 with ethanol non-solvent and two for the other seven membranes. The degradation temperature increases with the increase in molecular weight and the difference in non-solvents. The highest thermal stability membrane was PVDF Solef 1010 with isopropyl alcohol non-solvent (430°C). SEM images showed the membrane with non-solvent isopropyl alcohol, displaying a dense sponge-like morphology. The wettability of membranes is affected by molecular weight and non-solvent type. The membrane with isopropyl alcohol non-solvent obtained the smallest contact angle (54.77°) and indicated the most wettability membrane.
Fulltext View|Download
Keywords: Immersion precipitation; Membrane structure; PVDF
Funding: Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) Universitas Sebelas Maret under contract 228/UN27.22/PT.01.03/2023

Article Metrics:

  1. V. F. Cardoso, G. Botelho, S. Lanceros-Méndez, Nonsolvent induced phase separation preparation of poly(vinylidene fluoride- co-chlorotrifluoroethylene) membranes with tailored morphology, piezoelectric phase content and mechanical properties, Materials & Design, 88, (2015), 390-397 https://doi.org/10.1016/j.matdes.2015.09.018
  2. Edi Pramono, Rifki Alfiansyah, Muhamad Ahdiat, Deana Wahyuningrum, Cynthia Linaya Radiman, Hydrophilic poly(vinylidene fluoride)/bentonite hybrid membranes for microfiltration of dyes, Materials Research Express, 6, 10, (2019), 105376 https://doi.org/10.1088/2053-1591/ab42e9
  3. Marco Bolloli, Claire Antonelli, Yannick Molméret, Fannie Alloin, Cristina Iojoiu, Jean-Yves Sanchez, Nanocomposite poly(vynilidene fluoride) /nanocrystalline cellulose porous membranes as separators for lithium-ion batteries, Electrochimica Acta, 214, (2016), 38-48 https://doi.org/10.1016/j.electacta.2016.08.020
  4. Dong Zhou, Devaraj Shanmukaraj, Anastasia Tkacheva, Michel Armand, Guoxiu Wang, Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects, Chem, 5, 9, (2019), 2326-2352 https://doi.org/10.1016/j.chempr.2019.05.009
  5. Hongrui Xiang, Xiaobo Min, Chong-Jian Tang, Mika Sillanpää, Feiping Zhao, Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review, Journal of Water Process Engineering, 49, (2022), 103023 https://doi.org/10.1016/j.jwpe.2022.103023
  6. Manojit Pusty, Parasharam M. Shirage, Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy, Journal of Alloys and Compounds, 904, (2022), 164060 https://doi.org/10.1016/j.jallcom.2022.164060
  7. Dong Zou, Young Moo Lee, Design strategy of poly(vinylidene fluoride) membranes for water treatment, Progress in Polymer Science, 128, (2022), 101535 https://doi.org/10.1016/j.progpolymsci.2022.101535
  8. Guo-dong Kang, Yi-ming Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, Journal of Membrane Science, 463, (2014), 145-165 https://doi.org/10.1016/j.memsci.2014.03.055
  9. Hsu-Hsien Chang, Liang-Kuei Chang, Cheng-Dau Yang, Dar-Jong Lin, Liao-Ping Cheng, Effect of polar rotation on the formation of porous poly(vinylidene fluoride) membranes by immersion precipitation in an alcohol bath, Journal of Membrane Science, 513, (2016), 186-196 https://doi.org/10.1016/j.memsci.2016.04.052
  10. Monika Haponska, Anna Trojanowska, Adrianna Nogalska, Renata Jastrzab, Tania Gumi, Bartosz Tylkowski, PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature, Polymers, 9, 12, (2017), 718 https://doi.org/10.3390/polym9120718
  11. XueMei Tan, Denis Rodrigue, A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene, Polymers, 11, 8, (2019), 1310 https://doi.org/10.3390/polym11081310
  12. Zhaoliang Cui, Naser Tavajohi Hassankiadeh, Yongbing Zhuang, Enrico Drioli, Young Moo Lee, Crystalline polymorphism in poly(vinylidenefluoride) membranes, Progress in Polymer Science, 51, (2015), 94-126 https://doi.org/10.1016/j.progpolymsci.2015.07.007
  13. Gregory R. Guillen, Yinjin Pan, Minghua Li, Eric M. V. Hoek, Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review, Industrial & Engineering Chemistry Research, 50, 7, (2011), 3798-3817 https://doi.org/10.1021/ie101928r
  14. Duc-Trung Tran, Jean-Pierre Méricq, Julie Mendret, Stephan Brosillon, Catherine Faur, Influence of Preparation Temperature on the Properties and Performance of Composite PVDF-TiO2 Membranes, Membranes, 11, 11, (2021), 876 https://doi.org/10.3390/membranes11110876
  15. Zuolong Chen, Dipak Rana, Takeshi Matsuura, Derek Meng, Christopher Q. Lan, Study on structure and vacuum membrane distillation performance of PVDF membranes: II. Influence of molecular weight, Chemical Engineering Journal, 276, (2015), 174-184 https://doi.org/10.1016/j.cej.2015.04.030
  16. A. Figoli, S. Simone, A. Criscuoli, S. A. Al-Jlil, F. S. Al Shabouna, H. S. Al-Romaih, E. Di Nicolò, O. A. Al-Harbi, E. Drioli, Hollow fibers for seawater desalination from blends of PVDF with different molecular weights: Morphology, properties and VMD performance, Polymer, 55, 6, (2014), 1296-1306 https://doi.org/10.1016/j.polymer.2014.01.035
  17. Naser Tavajohi Hassankiadeh, Zhaoliang Cui, Ji Hoon Kim, Dong Won Shin, Aldo Sanguineti, Vincenzo Arcella, Young Moo Lee, Enrico Drioli, PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: Effect of PVDF molecular weight, Journal of Membrane Science, 471, (2014), 237-246 https://doi.org/10.1016/j.memsci.2014.07.060
  18. Dan-ying Zuo, Bao-ku Zhu, Jian-hua Cao, You-yi Xu, Influence of Alcohol-Based Nonsolvents on The Formation and Morphology of PVDF Membranes in Phase Inversion Process, Chinese Journal of Polymer Science, 24, 03, (2006), 281-289 https://doi.org/10.1142/S0256767906001308
  19. Panu Sukitpaneenit, Tai-Shung Chung, Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology, Journal of Membrane Science, 340, 1, (2009), 192-205 https://doi.org/10.1016/j.memsci.2009.05.029
  20. J. A. van't Hof, A. J. Reuvers, R. M. Boom, H. H. M. Rolevink, C. A. Smolders, Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method, Journal of Membrane Science, 70, 1, (1992), 17-30 https://doi.org/10.1016/0376-7388(92)80076-V
  21. Arshad Hussain, Andleeb Mehmood, Adil Saleem, Muhammad K. Majeed, Waseem Raza, Rashid Iqbal, Sajid Rauf, Ali Saad, Yonggui Deng, Geng Luo, Kai Zong, Liu Wei, Jun Shen, Dongqing Liu, Xingke Cai, Polyetherimide membrane with tunable porous morphology for safe lithium metal-based batteries, Chemical Engineering Journal, 453, (2023), 139804 https://doi.org/10.1016/j.cej.2022.139804
  22. S. Ashtiani, M. Khoshnamvand, P. Číhal, M. Dendisová, A. Randová, D. Bouša, A. Shaliutina-Kolešová, Z. Sofer, K. Friess, Fabrication of a PVDF membrane with tailored morphology and properties via exploring and computing its ternary phase diagram for wastewater treatment and gas separation applications, RSC Advances, 10, 66, (2020), 40373-40383 https://doi.org/10.1039/D0RA07592B
  23. Norafiqah Ismail, Mohamed Essalhi, Mahmoud Rahmati, Zhaoliang Cui, Mohamed Khayet, Naser Tavajohi, Experimental and theoretical studies on the formation of pure β-phase polymorphs during fabrication of polyvinylidene fluoride membranes by cyclic carbonate solvents, Green Chemistry, 23, 5, (2021), 2130-2147 https://doi.org/10.1039/D1GC00122A
  24. Yang Zhang, Lin Ye, Bopeng Zhang, Yongsheng Chen, Weigao Zhao, Guang Yang, Jie Wang, Hongwei Zhang, Characteristics and performance of PVDF membrane prepared by using NaCl coagulation bath: Relationship between membrane polymorphous structure and organic fouling, Journal of Membrane Science, 579, (2019), 22-32 https://doi.org/10.1016/j.memsci.2019.02.054
  25. Masashi Kotobuki, Li Lu, Seruguei V. Savilov, Serguei M. Aldoshin, Poly(vinylidene fluoride)-Based Al Ion Conductive Solid Polymer Electrolyte for Al Battery, Journal of The Electrochemical Society, 164, 14, (2017), A3868 https://doi.org/10.1149/2.1601714jes
  26. Xiaomei Cai, Tingping Lei, Daoheng Sun, Liwei Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR, RSC Advances, 7, 25, (2017), 15382-15389 https://doi.org/10.1039/C7RA01267E
  27. P. Martins, A. C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Progress in Polymer Science, 39, 4, (2014), 683-706 https://doi.org/10.1016/j.progpolymsci.2013.07.006
  28. Hilal Ahmad Rather, Ria Thakore, Ragini Singh, Dhwani Jhala, Sanjay Singh, Rajesh Vasita, Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application, Bioactive Materials, 3, 2, (2018), 201-211 https://doi.org/10.1016/j.bioactmat.2017.09.006
  29. Run Tian, Yanxia Zhang, Zhipeng Li, Yangyang Huan, Guangfen Li, Yi Li, Wansheng Li, Coupling effect of PVDF molar mass and carboxyl content in CNTs on microstructure and thermal properties of CNT/PVDF composites, Materials Research Express, 5, 6, (2018), 065031 https://doi.org/10.1088/2053-1591/aac920
  30. Jean E. Marshall, Anna Zhenova, Samuel Roberts, Tabitha Petchey, Pengcheng Zhu, Claire E. J. Dancer, Con R. McElroy, Emma Kendrick, Vannessa Goodship, On the Solubility and Stability of Polyvinylidene Fluoride, Polymers, 13, 9, (2021), 1354 https://doi.org/10.3390/polym13091354
  31. Zhipeng Hou, Peng Li, Jing Guo, Jiwei Wang, Jianshe Hu, Liqun Yang, The effect of molecular weight on thermal properties and degradation behavior of copolymers based on TMC and DTC, Polymer Degradation and Stability, 175, (2020), 109128 https://doi.org/10.1016/j.polymdegradstab.2020.109128
  32. W. Richard Bowen, Teodora A. Doneva, Atomic force microscopy characterization of ultrafiltration membranes: correspondence between surface pore dimensions and molecular weight cut-off, Surface and Interface Analysis, 29, 8, (2000), 544-547 https://doi.org/10.1002/1096-9918(200008)29:8<544::AID-SIA901>3.0.CO;2-4
  33. Chen Li, Lei Wang, Xudong Wang, Cuicui Li, Qibin Xu, Guangyuan Li, Fabrication of a SGO/PVDF-g-PSSA composite proton-exchange membrane and its enhanced performance in microbial fuel cells, Journal of Chemical Technology & Biotechnology, 94, 2, (2019), 398-408 https://doi.org/10.1002/jctb.5783
  34. M. Bassyouni, M. H. Abdel-Aziz, M. S. Zoromba, S. M. S. Abdel-Hamid, E. Drioli, A review of polymeric nanocomposite membranes for water purification, J. Ind. Eng. Chem., 73, (2019), 19-46 https://doi.org/10.1016/j.jiec.2019.01.045
  35. Junwoo Lee, Sangwoo Lim, Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide, J. Ind. Eng. Chem., 67, (2018), 478-485 https://doi.org/10.1016/j.jiec.2018.07.022
  36. Guang Hui Teoh, Boon Seng Ooi, Zeinab Abbas Jawad, Siew Chun Low, Impacts of PVDF polymorphism and surface printing micro-roughness on superhydrophobic membrane to desalinate high saline water, Journal of Environmental Chemical Engineering, 9, 4, (2021), 105418 https://doi.org/10.1016/j.jece.2021.105418
  37. Mieowkee Chan, Sokchoo Ng, Effect of membrane properties on contact angle, AIP Conference Proceedings, 2016, (2018), 020035 https://doi.org/10.1063/1.5055437

Last update:

No citation recorded.

Last update: 2024-11-23 23:09:01

No citation recorded.