1Department of Chemical Engineering, Faculty of Engineering, Malikussaleh University, Lhokseumawe, Indonesia
2Department of Chemical Engineering, Faculty of Engineering, Syiah Kuala University, Banda Aceh, Indonesia
BibTex Citation Data :
@article{JKSA58506, author = {Rozanna Dewi and Novi Sylvia and Medyan Riza}, title = {Characterization of Degradable Plastics from Sago and Breadfruit Starch-Based with Addition of Zinc Oxide (ZnO) Catalyst and Polyvinyl Alcohol (PVA)}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {26}, number = {11}, year = {2023}, keywords = {degradable plastic; sago starch; breadfruit starch; ZnO catalyst; PVA}, abstract = { Degradable plastic can be used as a substitute for commercial plastic. Degradable plastic made from starch with zinc oxide (ZnO) catalyst and polyvinyl alcohol (PVA) has biodegradable properties. This research used sago starch, breadfruit starch, ZnO catalyst, and PVA as additives to strengthen the mechanical properties of degradable plastic. The research methodology encompassed several stages, including the preparation of sago and breadfruit starch, the synthesis of degradable plastic, and the subsequent evaluation of its characteristics. Various concentrations of ZnO and PVA catalysts (10%, 20%, 30%, and 40%) were employed in this study. Mechanical characteristic test for degradable plastic showed that the tensile strength test for sago starch-based plastic with 40% ZnO catalyst and PVA was 2.31–3.96 MPa, while for breadfruit starch-based degradable plastic was 2.88–3.20 MPa. FTIR analysis revealed that the compound constituents of degradable plastics exhibit hydrophilic properties and readily interact with water, making them susceptible to natural degradation in soil. Furthermore, the thermal characteristics were examined using DSC, which indicated that sago starch-based degradable plastic (with ZnO 40% and PVA 40%) exhibited a thermogram peak at a temperature of 137.15°C, while the breadfruit starch-based plastic displayed a peak at 136.97°C. In terms of water absorption, the swelling index for sago starch-based plastic ranged from 18.35% to 65.26%, whereas for breadfruit starch-based plastic, it ranged from 19.91% to 64.06%. Notably, the lowest water absorption levels were observed at a ZnO concentration of 40% and a PVA concentration of 10%. The higher the PVA concentration, the more water was absorbed due to the hydrophilic nature of PVA, but the higher the ZnO concentration, the lower the water absorption. Degradation of plastics sago and breadfruit starch occurred for 20-28 days and by ASTM D-20.96 (degradable plastics should be decomposed before 180 days). The higher the concentration of ZnO catalyst added to bioplastics, the longer the degradation time, while the higher the PVA content, the faster the degradation time. }, issn = {2597-9914}, pages = {427--436} doi = {10.14710/jksa.26.11.427-436}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/58506} }
Refworks Citation Data :
Degradable plastic can be used as a substitute for commercial plastic. Degradable plastic made from starch with zinc oxide (ZnO) catalyst and polyvinyl alcohol (PVA) has biodegradable properties. This research used sago starch, breadfruit starch, ZnO catalyst, and PVA as additives to strengthen the mechanical properties of degradable plastic. The research methodology encompassed several stages, including the preparation of sago and breadfruit starch, the synthesis of degradable plastic, and the subsequent evaluation of its characteristics. Various concentrations of ZnO and PVA catalysts (10%, 20%, 30%, and 40%) were employed in this study. Mechanical characteristic test for degradable plastic showed that the tensile strength test for sago starch-based plastic with 40% ZnO catalyst and PVA was 2.31–3.96 MPa, while for breadfruit starch-based degradable plastic was 2.88–3.20 MPa. FTIR analysis revealed that the compound constituents of degradable plastics exhibit hydrophilic properties and readily interact with water, making them susceptible to natural degradation in soil. Furthermore, the thermal characteristics were examined using DSC, which indicated that sago starch-based degradable plastic (with ZnO 40% and PVA 40%) exhibited a thermogram peak at a temperature of 137.15°C, while the breadfruit starch-based plastic displayed a peak at 136.97°C. In terms of water absorption, the swelling index for sago starch-based plastic ranged from 18.35% to 65.26%, whereas for breadfruit starch-based plastic, it ranged from 19.91% to 64.06%. Notably, the lowest water absorption levels were observed at a ZnO concentration of 40% and a PVA concentration of 10%. The higher the PVA concentration, the more water was absorbed due to the hydrophilic nature of PVA, but the higher the ZnO concentration, the lower the water absorption. Degradation of plastics sago and breadfruit starch occurred for 20-28 days and by ASTM D-20.96 (degradable plastics should be decomposed before 180 days). The higher the concentration of ZnO catalyst added to bioplastics, the longer the degradation time, while the higher the PVA content, the faster the degradation time.
Article Metrics:
Last update:
Last update: 2024-11-22 02:52:12
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.