skip to main content

Formulation and Synthesis of Vanillin from Clove Oil as a Chemosensor for Urea Detection in Urine

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Sleman, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

Received: 17 Nov 2023; Revised: 5 Mar 2024; Accepted: 6 Mar 2024; Published: 20 Mar 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Urea levels in urine play an important parameter in diagnosing bodily conditions through liver and kidney examinations. The typical reagent for detecting urea content in urine is para-dimethylaminobenzaldehyde (pDMAB). However, it has a drawback related to the instability of color in the resulting Schiff base compound (pDMAB-urea). In this study, the synthesized vanillin compound derived from clove oil serves as the foundational material for a urea chemosensor based on the colorimetric concept. The synthesized vanillin was characterized using FTIR, GC-MS, and 1H-NMR. The formulation of the vanillin compound as a sensor was conducted by assessing the suitable solvent, determining the optimal mass of vanillin, and evaluating the acid-base conditions of the sensor formulation system both qualitatively and quantitatively. Subsequently, the most effective formulation was selected for detecting urea in urine samples. The synthesis of vanillin yielded a purity level of 95%. The optimal formulation was obtained at an optimum mass of vanilla of 0.75 g in 50 mL of 96% ethanol and 10 mL of 10% NaOH. The color change in the sample was from colorless to greenish yellow (436 nm). The vanillin obtained was applied to urine samples with the best results at a sample dilution level of 10,000×.
Fulltext View|Download
Keywords: colorimetry; clove oil; urea; urine; vanillin
Funding: Kementrian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia under contract Universitas Gadjah Mada under contract PKM Center UGM under contract Departemen Kimia Universitas Gadjah Mada under contract

Article Metrics:

  1. Takao Sakurai, Toshiaki Irii, Kimiharu Iwadate, Simultaneous quantification of urea, uric acid, and creatinine in human urine by liquid chromatography/mass spectrometry, Legal Medicine, 55, (2022), 102011 https://doi.org/10.1016/j.legalmed.2021.102011
  2. Yuyang Bei, Kamile Arkin, Yuxin Zheng, Xuesong Ma, Jie Zhao, Huimin Jin, Qingkun Shang, Construction of a ratiometric fluorescent probe for visual detection of urea in human urine based on carbon dots prepared from Toona sinensis leaves and 5-carboxyfluorescein, Analytica Chimica Acta, 1240, (2023), 340733 https://doi.org/10.1016/j.aca.2022.340733
  3. Nura Ma’shumah, Sufiati Bintanah, Erma Handarsari, Hubungan Asupan Protein Dengan Kadar Ureum, Kreatinin, dan Kadar Hemoglobin Darah pada Penderita Gagal Ginjal Kronik Hemodialisa Rawat Jalan Di RS Tugurejo Semarang, Jurnal Gizi, 3, 1, (2014),
  4. Ardhiles Wahyu Kurniawan, Juliati Koesrini, Hubungan Kadar Ureum, Hemoglobin dan Lama Hemodialisa dengan Kualitas Hidup Penderita PGK, Jurnal Ners dan kebidanan, 6, 3, (2019), 292-299 https://doi.org/10.26699/jnk.v6i3.ART.p292-299
  5. Rahmi Nur Fahisyah, Nurlia Naim, Zulfian Armah, Pengaruh Variasi Lama Penyimpanan Reagen Enzim 1a Terhadap Hasil Pemeriksaan Ureum Darah Metode Berthelot, Jurnal Media Analis Kesehatan, 10, 1, (2019), 21-27 https://doi.org/10.32382/mak.v10i1.980
  6. Hanim Istatik Badi’ah, Pengaruh variasi Reagen asam dalam pembuatan sensor urea menggunakan Reagen Diacetil Monoxime-Thiosemicarbazide secara Adsorpsi pada Plat Silika Gel, Chemistry, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, 2015
  7. Dang Soni, Riska Prasetiawati, Dian Novita Sari, Pengaruh lokasi terhadap kadar ion fluorida pada air sumur dan air PAM dengan metode kolorimetri, Jurnal Ilmiah Farmako Bahari 10, 1, (2019), 76-90 http://dx.doi.org/10.52434/jfb.v10i1.650
  8. Wei-Yi Zhang, Chun-Yan Zhang, Hang-Yu Zhou, Tao Tian, Hua Chen, Hao Zhang, Feng-Qing Yang, Paper-based sensor depending on the Prussian blue pH sensitivity: Smartphone-assisted detection of urea, Microchemical Journal, 181, (2022), 107783 https://doi.org/10.1016/j.microc.2022.107783
  9. Nadtinan Promphet, Wisarttra Phamonpon, Wimala Karintrithip, Pranee Rattanawaleedirojn, Kanokwan Saengkiettiyut, Yuttanant Boonyongmaneerat, Nadnudda Rodthongkum, Carbonization of self-reduced AuNPs on silk as wearable skin patches for non-invasive sweat urea detection, International Journal of Biological Macromolecules, 242, (2023), 124757 https://doi.org/10.1016/j.ijbiomac.2023.124757
  10. Amir Rostami, Hassan Soleimani, Zahra Samavati, Nasrin Khodapanah, Hojjatollah Soleimani, Surajudeen Sikiru, Mohammed Falalu Hamza, Vahid Khosravi, Real-time monitoring of urea slow release through fiber Bragg grating sensors, Measurement, 221, (2023), 113464 https://doi.org/10.1016/j.measurement.2023.113464
  11. Hermin Sulistyarti, Akhmad Sabarudin, Yudha Ikoma Istanti, Eka Ratri Noor Wulandari, Penentuan Kreatinin dalam Urin secara Kolorimetri dengan Sequential Injection-Flow Reversal Mixing (SI-FRM), Jurnal Berkala Ilmiah Sains dan Terapan Kimia, 5, 2, (2011), 158-164
  12. Irina Timofeeva, Polina Davletbaeva, Alexey Moskvin, Andrey Bulatov, p-Dimethylaminobenzaldehyde-based chemosensor for on-site sensing of ammonia precursor in concrete, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 253, (2021), 119556 https://doi.org/10.1016/j.saa.2021.119556
  13. Noah James Langenfeld, Lauren Elizabeth Payne, Bruce Bugbee, Colorimetric determination of urea using diacetyl monoxime with strong acids, PLoS ONE, 16, 11, (2021), e0259760 https://doi.org/10.1371/journal.pone.0259760
  14. Taher Alizadeh, Mohammad Reza Ganjali, Faride Rafiei, Trace level and highly selective determination of urea in various real samples based upon voltammetric analysis of diacetylmonoxime-urea reaction product on the carbon nanotube/carbon paste electrode, Analytica Chimica Acta, 974, (2017), 54-62 https://doi.org/10.1016/j.aca.2017.04.039
  15. Sekar Ayu Maharani, Adella Aisiyah, Diva Rizqi Salsabilla, Regita Nailuvar, Isolasi Senyawa Aktif Lignan dari Beberapa Tanaman, Equivalent: Jurnal Ilmiah Sosial Teknik, 4, 1, (2022), 73-81 https://doi.org/10.59261/jequi.v4i1.65
  16. Sayyid Syauqas Amarullah, Aldika Saputra, Devi Sartika Marni, Putri Athirah, Nur’Alian Nur’Alian, Izwar Izwar, Pemanfaatan Produk Lokal Berbasis Minyak Serai Wangi (Cymbopogon nardus (l) rendle) Dalam Rangka Peningkatan Kapasitas Ekonomi Masyarakat Desa Pantan Reduk, Jurnal Pengabdian Masyarakat Bangsa, 1, 7, (2023), 956 - 963 https://doi.org/10.59837/jpmba.v1i7.290
  17. Franky Reintje Tulungen, Cengkeh dan Manfaatnya Bagi Kesehatan Manusia Melalui Pendekatan Competitive Intelligence, Biofarmasetikal Tropis (The Tropical Journal of Biopharmaceutical), 2, 2, (2019), 158-169 https://doi.org/10.55724/jbiofartrop.v2i2.128
  18. Tresno Saras, Cengkeh : Keajaiban Herbal dalam Pengobatan dan Kesehatan, Tiram Media, 2023,
  19. Sayu Kade Sintia Dewi, Made Antara, Gede Mekse Korri Arisena, Pemasaran Cengkeh di Desa Penyaringan Kecamatan Mendoyo, Kabupaten Jembrana, Bali, Indonesia, Agro Bali: Agricultural Journal, 4, 2, (2021), 246-259 https://doi.org/10.37637/ab.v4i2.719
  20. İsmail Tarhan, A robust method for simultaneous quantification of eugenol, eugenyl acetate, and β-caryophyllene in clove essential oil by vibrational spectroscopy, Phytochemistry, 191, (2021), 112928 https://doi.org/10.1016/j.phytochem.2021.112928
  21. Saiful Hadi, Pengambilan Minyak Atsiri Bunga Cengkeh (Clove Oil) Menggunakan Pelarut N-Heksana dan Benzena, Jurnal Bahan Alam Terbarukan, 1, 2, (2012), 25-30
  22. Alberto Peña-Barrientos, María de J. Perea-Flores, Hugo Martínez-Gutiérrez, Olga A. Patrón-Soberano, Francisco E. González-Jiménez, Miguel Á Vega-Cuellar, Gloria Dávila-Ortiz, Physicochemical, microbiological, and structural relationship of vanilla beans (Vanilla planifolia, Andrews) during traditional curing process and use of its waste, Journal of Applied Research on Medicinal and Aromatic Plants, 32, (2023), 100445 https://doi.org/10.1016/j.jarmap.2022.100445
  23. Fadhlan Zuhdi, Khoiru Rizqy Rambe, Daya saing ekspor cengkeh Indonesia di pasar global, Jurnal Sosial Ekonomi Pertanian dan Agribisnis, 17, 2, (2021), 165-173 https://doi.org/10.20961/sepa.v17i2.43784
  24. Rebeca Yépez, Juan F. Illescas, Paulina Gijón, Manuel Sánchez-Sánchez, Eduardo González-Zamora, Rosa Santillan, J. Raziel Álvarez, Ilich A. Ibarra, Julia Aguilar-Pliego, HKUST-1 as a Heterogeneous Catalyst for the Synthesis of Vanillin, JoVE (Journal of Visualized Experiments), 113, (2016), e54054 https://dx.doi.org/10.3791/54054
  25. Rosaria Ciriminna, Alexandra Fidalgo, Francesco Meneguzzo, Francesco Parrino, Laura M. Ilharco, Mario Pagliaro, Vanillin: The Case for Greener Production Driven by Sustainability Megatrend, ChemistryOpen, 8, 6, (2019), 660-667 https://doi.org/10.1002/open.201900083
  26. O. Y. Saiapina, V. M. Pyeshkova, O. O. Soldatkin, V. G. Melnik, B. Akata Kurç, A. Walcarius, S. V. Dzyadevych, N. Jaffrezic-Renault, Conductometric enzyme biosensors based on natural zeolite clinoptilolite for urea determination, Materials Science and Engineering: C, 31, 7, (2011), 1490-1497 https://doi.org/10.1016/j.msec.2011.06.003
  27. Farzaneh Shalileh, Hossein Sabahi, Mehdi Dadmehr, Morteza Hosseini, Sensing approaches toward detection of urea adulteration in milk, Microchemical Journal, 193, (2023), 108990 https://doi.org/10.1016/j.microc.2023.108990
  28. Fernanda L. Migliorini, Rafaela C. Sanfelice, Luiza A. Mercante, Rafaela S. Andre, Luiz H. C. Mattoso, Daniel S. Correa, Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles, Applied Surface Science, 443, (2018), 18-23 https://doi.org/10.1016/j.apsusc.2018.02.168
  29. Widayat Widayat, Hadiyanto Hadiyanto, Bambang Cahyono, Ngadiwiyana Ngadiwiyana, Optimization of eugenol extraction from clove oil using response surface methodology, Modern Applied Science, 9, 11, (2015), 68-76 https://doi.org/10.5539/mas.v9n11p68
  30. Suryadi Budi Utomo, Tresni Setiati, Application of Calixarene as A Phase Transfer Catalyst in Vanilin Synthesis from Eugenol, 2019, 4, 3, (2019), 179-188 https://doi.org/10.20961/jkpk.v4i3.34993
  31. Wahyudi Priyono Suwarso, Tony Sukri, Hendra Wijaya, Reaksi Penataan Ulang Sigmatropik Hidrogen [1, 3] Secara Termal dan Reaksi Penataan Ulang Prototropik [1, 3] yang Dikatalisis oleh Katalis Transfer Fase (PTC),[18]-Crown Ether-6: Semi-Sintesis Vanili dari Eugenol, Makara Journal of Science, 6, 1, (2002), 14
  32. Bolaji B. Oluremi, Paul M. Osamudiamen, Johnson A. Adeniji, Olapeju O. Aiyelaagbe, Anti-measles virus activity of 4-hydroxy-3-methoxy benzaldehyde (Vanillin) isolated from Xylopia aethiopica (Dunal) A. rich, Scientific African, 19, (2023), e01506 https://doi.org/10.1016/j.sciaf.2022.e01506
  33. Babur Z. Chowdhry, John P. Ryall, Trevor J. Dines, Andrew P. Mendham, Infrared and Raman Spectroscopy of Eugenol, Isoeugenol, and Methyl Eugenol: Conformational Analysis and Vibrational Assignments from Density Functional Theory Calculations of the Anharmonic Fundamentals, The Journal of Physical Chemistry A, 119, 46, (2015), 11280-11292 https://doi.org/10.1021/acs.jpca.5b07607
  34. Zheng Zhao, Haoke Zhang, Jacky W. Y. Lam, Ben Zhong Tang, Aggregation-Induced Emission: New Vistas at the Aggregate Level, Angewandte Chemie International Edition, 59, 25, (2020), 9888-9907 https://doi.org/10.1002/anie.201916729

Last update:

No citation recorded.

Last update: 2024-12-25 23:31:43

No citation recorded.