skip to main content

In Silico Antibacterial Activity of Polyacetilene Derivatives Against Mycobacterium tuberculosis and In-Vitro Antioxidant Properties from Ethanol Extraction of Blackjack (Bidens pilosa L.)

1Master Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, East Java, Surabaya, Indonesia

2Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Central Java, Banyumas, Indonesia

Received: 22 Nov 2023; Revised: 20 Apr 2024; Accepted: 2 May 2024; Published: 31 May 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Blackjack (Bidens pilosa L.) has a bioactive compound, one of which is polyacetylene, which can inhibit the growth of antimicrobials in general. This study aims to conduct an in silico study to determine the antibacterial activity against Mycobacterium Tuberculosis of 20 derivatives polyacetylene; TPC was determined by Folin–Ciocalteu colorimetric method using gallic acid as standard, and various concentrations of the extract solutions were measured at 741 nm. TFC was calculated using an aluminum chloride colorimetric assay. Quercetin was used as standard, and the absorbance was measured at 426 nm. Antioxidant activity was evaluated using DPPH scavenging 517 nm and Frap Assay 596 nm. The molecular docking results showed that the compounds (5-(2-Phenylethynyl)-2-b-glucosylmethyl-thiophene, Glucopyranosyloxy-3-hydroxy-6(E)-tetradecane-8,10,12-triyne and Phenylhexa-1,3,5-triyn-1-yl acetate were most potentially anti-tuberculosis on the target protein InhA with the binding energy produced <-6.55 Kcal/mol and the lowest inhibitory cost of 1.838×10-6. The compound has amino acids similar to natural ligands and standard compounds of isoniazid. The given ADME-T predictions showed good pharmacokinetic properties and safe levels of toxicity (5-(2-Phenylethynyl)-2-b-glucosylmethyl-thiophene, Glucopyranosyloxy-3-hydroxy-6(E)-tetradecane-8,10,12-triyne in hepatotoxic and LD50. The highest antioxidant properties in blackjack are produced by FRAP assay 722.905±7.985 mMTE/gr. This proves that blackjack has antioxidant activity and is required for bioassay-guided isolation testing against Mycobacterium tuberculosis.

Fulltext View|Download
Keywords: Bidens pilosa L.; tuberculosis; InhA; polyacetylene derivatives; antioxidant properties

Article Metrics:

  1. World Heart Organization, Global Tuberculosis Report 2022, World Health Organization, Geneva, 2022
  2. Kementerian Kesehatan Republik Indonesia, Petunjuk Teknis Penatalaksanaan Tuberculosis Resisten Obat Di Indonesia, Jakarta, 2020
  3. Irmayanti Irwan, Hajrah Hajrah, Yurika Sastyarina, Simulasi Docking Senyawa Napthoquinones Umbi Bawang Tiwai (Eleutherine americana Merr.) terhadap Bakteri Mycobacterium tuberculosis, Proceeding of Mulawarman Pharmaceuticals Conferences, 2021
  4. Ruswanto Ruswanto, molecular docking empat turunan isonicotinohydrazide pada mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA), Jurnal Kesehatan Bakti Tunas Husada: Jurnal Ilmu-Ilmu Keperawatan, Analis Kesehatan Dan Farmasi, 13, 1, (2015), 135-141
  5. Mara Imam Taufiq Siregar, Mekanisme Resistensi Isoniazid &Mutasi Gen KatG Ser315Thr (G944C) Mycobacterium tuberculosis Sebagai Penyebab Tersering Resistensi Isoniazid, Jambi Medical Journal: Jurnal Kedokteran dan Kesehatan, 3, 2, (2015), 119-131
  6. E. T. Y. Leung, P. L. Ho, K. Y. Yuen, W. L. Woo, T. H. Lam, R. Y. Kao, W. H. Seto, W. C. Yam, Molecular Characterization of Isoniazid Resistance in Mycobacterium tuberculosis: Identification of a Novel Mutation in inhA, Antimicrobial Agents and Chemotherapy, 50, 3, (2006), 1075-1078 https://doi.org/10.1128/aac.50.3.1075-1078.2006
  7. Evelyn Koeche Schroeder, Luiz Augusto Basso, Diógenes Santiago Santos, Osmar Norberto de Souza, Molecular Dynamics Simulation Studies of the Wild-Type, I21V, and I16T Mutants of Isoniazid-Resistant Mycobacterium tuberculosis Enoyl Reductase (InhA) in Complex with NADH: Toward the Understanding of NADH-InhA Different Affinities, Biophysical Journal, 89, 2, (2005), 876-884 https://doi.org/10.1529/biophysj.104.053512
  8. Michelle H. Larsen, Catherine Vilchèze, Laurent Kremer, Gurdyal S. Besra, Linda Parsons, Max Salfinger, Leonid Heifets, Manzour H. Hazbon, David Alland, James C. Sacchettini, William R. Jacobs Jr, Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis, Molecular Microbiology, 46, 2, (2002), 453-466 https://doi.org/10.1046/j.1365-2958.2002.03162.x
  9. Lailatus Sholichah, Dinar Alfidhdhoh, Ethnobotany of the wild plant as a food crop in Mendiro Village, Wonosalam District, Jombang, Jurnal Ilmu Pertanian Indonesia, 25, 1, (2020), 111-117 https://doi.org/10.18343/jipi.25.1.111
  10. Yi-Ming Chiang, Da-Yung Chuang, Sheng-Yang Wang, Yueh-Hsiung Kuo, Pi-Wen Tsai, Lie-Fen Shyur, Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa, Journal of Ethnopharmacology, 95, 2, (2004), 409-419 https://doi.org/10.1016/j.jep.2004.08.010
  11. Tran Dang Xuan, Tran Dang Khanh, Chemistry and pharmacology of Bidens pilosa: an overview, Journal of Pharmaceutical Investigation, 46, 2, (2016), 91-132 https://doi.org/10.1007/s40005-016-0231-6
  12. M. G. L. Brandão, A. U. Krettli, L. S. R. Soares, C. G. C. Nery, H. C. Marinuzzi, Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds, Journal of Ethnopharmacology, 57, 2, (1997), 131-138 https://doi.org/10.1016/S0378-8741(97)00060-3
  13. Shu-Lin Chang, Yi-Ming Chiang, Cicero Lee-Tian Chang, Hsu-Hua Yeh, Lie-Fen Shyur, Yueh-Hsiung Kuo, Tung-Kung Wu, Wen-Chin Yang, Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-γ expression, Journal of Ethnopharmacology, 112, 2, (2007), 232-236 https://doi.org/10.1016/j.jep.2007.03.001
  14. Wen-Chin Lee, Chiung-Chi Peng, Chi-Huang Chang, Shiau-Huei Huang, Charng-Cherng Chyau, Extraction of Antioxidant Components from Bidens pilosa Flowers and Their Uptake by Human Intestinal Caco-2 Cells, Molecules, 18, 2, (2013), 1582-1601 https://doi.org/10.3390/molecules18021582
  15. Jianguo Wu, Zhongxian Wan, Jun Yi, Yanbin Wu, Wei Peng, Jinzhong Wu, Investigation of the extracts from Bidens pilosa Linn. var. radiata Sch. Bip. for antioxidant activities and cytotoxicity against human tumor cells, Journal of Natural Medicines, 67, 1, (2013), 17-26 https://doi.org/10.1007/s11418-012-0639-x
  16. Pinarosa Avato, Cesare Vitali, Piernatale Mongelli, Aldo Tava, Antimicrobial activity of polyacetylenes from Bellis perennis and their synthetic derivatives, Planta Medica, 63, 06, (1997), 503-507 https://doi.org/10.1055/s-2006-957751
  17. Rachel L. C. Pereira, Tereza Ibrahim, Leonardo Lucchetti, Antonio Jorge R. da Silva, Vera Lucia Gonçalves de Moraes, Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L, Immunopharmacology, 43, 1, (1999), 31-37 https://doi.org/10.1016/S0162-3109(99)00039-9
  18. Bernhard Hoffmann, Josef Hölzl, Weitere acylierte Chalkone aus Bidens pilosa, Planta Medica, 54, 05, (1988), 450-451 https://doi.org/10.1055/s-2006-962497
  19. Li-Wha Wu, Yi-Ming Chiang, Hsiao-Ching Chuang, Sheng-Yang Wang, Ga-Wen Yang, Ya-Huey Chen, Ling-Ya Lai, Lie-Fen Shyur, Polyacetylenes Function as Anti-Angiogenic Agents, Pharmaceutical Research, 21, 11, (2004), 2112-2119 https://doi.org/10.1023/B:PHAM.0000048204.08865.41
  20. Laura Alvarez, Silvia Marquina, Maria Luisa Villarreal, Daniel Alonso, Eduardo Aranda, Guillermo Delgado, Bioactive polyacetylenes from Bidens pilosa, Planta Medica, 62, 04, (1996), 355-357 https://doi.org/10.1055/s-2006-957902
  21. Shu-Lin Chang, Cicero Lee-Tian Chang, Yi-Ming Chiang, Rong-Hong Hsieh, Chii-Ruey Tzeng, Tung-Kung Wu, Huey-Kang Sytwu, Lie-Fen Shyur, Wen-Chin Yang, Polyacetylenic Compounds and Butanol Fraction from Bidens pilosa can Modulate the Differentiation of Helper T Cells and Prevent Autoimmune Diabetes in Non-Obese Diabetic Mice, Planta Medica, 70, 11, (2004), 1045-1051 https://doi.org/10.1055/s-2004-832645
  22. Rui Wang, Quan-Xiang Wu, Yan-Ping Shi, Polyacetylenes and Flavonoids from the Aerial Parts of Bidens pilosa, Planta Medica, 76, 09, (2010), 893-896 https://doi.org/10.1055/s-0029-1240814
  23. R. A. Norton, Bidens alba (Smooth Beggar-Tick) and Bidens pilosa (Hairy Beggar-Tick), in: Y.P.S. Bajaj (Ed.) Medicinal and Aromatic Plants III, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, https://doi.org/10.1007/978-3-642-84071-5_8
  24. Rafael Baptista, Sumana Bhowmick, Jianying Shen, Luis A. J. Mur, Molecular Docking Suggests the Targets of Anti-Mycobacterial Natural Products, Molecules, 26, 2, (2021), 475 https://doi.org/10.3390/molecules26020475
  25. Ajay N. Jain, Anthony Nicholls, Recommendations for evaluation of computational methods, Journal of Computer-Aided Molecular Design, 22, 3, (2008), 133-139 https://doi.org/10.1007/s10822-008-9196-5
  26. Mohammad Rizki Fadhil Pratama, Hadi Poerwono, Siswandono Siswodihardjo, Introducing a two‐dimensional graph of docking score difference vs. similarity of ligand‐receptor interactions, Indonesian Journal of Biotechnology, 26, 1, (2021), 54-60 https://doi.org/10.22146/ijbiotech.62194
  27. Dwi Hartanti, Shintia Lintang Charisma, Widya Agustina, Rizky Destya Sary, Denia Awanda Putri, Alwani Hamad, The in-vitro Antioxidant Properties of Crude Drugs Traditionally Used for Diabetes Management in Northern Banyumas, Majalah Obat Tradisional, 27, 3, (2022), 199-209 https://doi.org/10.22146/mot.76958
  28. Harry Noviardi, Fachrurrazie Fachrurrazie, Potensi Senyawa Bullatalisin Sebagai Inhibitor Protein Leukotrien A4 Hidrolase Pada Kanker Kolon Secara In Silico, Fitofarmaka: Jurnal Ilmiah Farmasi, 5, 2, (2015), 65-73 https://doi.org/10.33751/jf.v5i2.410
  29. Indah Wulan Sari, Junaidin Junaidin, Dina Pratiwi, Studi Molecular Docking Senyawa Flavonoid Herba Kumis Kucing (Orthosiphon Stamineus B.) Pada Reseptor Α-Glukosidase Sebagai Antidiabetes Tipe 2, Jurnal Farmagazine, 7, 2, (2020), 54-60
  30. Karisma Enggar Saputri, Nurul Fakhmi, Erwinda Kusumaningtyas, Dedy Priyatama, Broto Santoso, Docking molekular potensi anti diabetes melitus tipe 2 turunan zerumbon sebagai inhibitor aldosa reduktase dengan autodock-vina, Chimica et Natura Acta, 4, 1, (2016), 16-20 https://doi.org/10.24198/cna.v4.n1.10443
  31. Usman Sumo Friend Tambunan, Samira Alamudi, Designing cyclic peptide inhibitor of dengue virus NS3-NS2B protease by using molecular docking approach, Bioinformation, 5, 6, (2010), 250-254
  32. Doroteja Vnučec, Andreja Kutnar, Andreja Goršek, Soy-based adhesives for wood-bonding – a review, Journal of Adhesion Science and Technology, 31, 8, (2017), 910-931 https://doi.org/10.1080/01694243.2016.1237278
  33. Muhammad Idrees, Afzal R. Mohammad, Nazira Karodia, Ayesha Rahman, Multimodal Role of Amino Acids in Microbial Control and Drug Development, Antibiotics, 9, 6, (2020), 330 https://doi.org/10.3390/antibiotics9060330
  34. Mohammad Rizki Fadhil Pratama, Evi Mulyani, Suratno Suratno, Molecular docking study of akar kuning (Arcangelisia flava) secondary metabolites as Src Inhibitor, Indonesian Journal of Cancer Chemoprevention, 10, 3, (2019), 122-130 http://dx.doi.org/10.14499/indonesianjcanchemoprev10iss3pp122-130
  35. Rafaelle Bonzanini Romero, Adriano Lopes Romero, Inibição de Ciclooxigenases 1 (COX-1) e 2 (COX-2) por Monoterpenos: um Estudo in Silico, Journal of Health Sciences, 16, 4, (2014), 307-316
  36. Jogoth Ali, Patrick Camilleri, Marc B. Brown, Andrew J. Hutt, Stewart B. Kirton, Revisiting the General Solubility Equation: In Silico Prediction of Aqueous Solubility Incorporating the Effect of Topographical Polar Surface Area, Journal of Chemical Information and Modeling, 52, 2, (2012), 420-428 https://doi.org/10.1021/ci200387c
  37. Yuan H. Zhao, Michael H. Abraham, Adam Ibrahim, Paul V. Fish, Susan Cole, Mark L. Lewis, Marcel J. de Groot, Derek P. Reynolds, Predicting Penetration Across the Blood-Brain Barrier from Simple Descriptors and Fragmentation Schemes, Journal of Chemical Information and Modeling, 47, 1, (2007), 170-175 https://doi.org/10.1021/ci600312d
  38. Congying Xu, Feixiong Cheng, Lei Chen, Zheng Du, Weihua Li, Guixia Liu, Philip W. Lee, Yun Tang, In silico Prediction of Chemical Ames Mutagenicity, Journal of Chemical Information and Modeling, 52, 11, (2012), 2840-2847 https://doi.org/10.1021/ci300400a
  39. Denis Mulliner, Friedemann Schmidt, Manuela Stolte, Hans-Peter Spirkl, Andreas Czich, Alexander Amberg, Computational Models for Human and Animal Hepatotoxicity with a Global Application Scope, Chemical Research in Toxicology, 29, 5, (2016), 757-767 https://doi.org/10.1021/acs.chemrestox.5b00465
  40. Bruce N. Ames, Joyce McCann, Edith Yamasaki, Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test, Mutation Research/Environmental Mutagenesis and Related Subjects, 31, 6, (1975), 347-363 https://doi.org/10.1016/0165-1161(75)90046-1
  41. B. Mathieu, L. Bertrand, V. Peyrusse, F. Schaffner, M. Bertrand, Culicidae and water mites: parasitism under Mediterranean climatic conditions, Acarologia, 47, 1-2, (2007), 55-61
  42. Tailong Lei, Youyong Li, Yunlong Song, Dan Li, Huiyong Sun, Tingjun Hou, ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling, Journal of Cheminformatics, 8, (2016), 6 https://doi.org/10.1186/s13321-016-0117-7
  43. Luciana L. Mensor, Fábio S. Menezes, Gilda G. Leitão, Alexandre S. Reis, Tereza C. dos Santos, Cintia S. Coube, Suzana G. Leitão, Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method, Phytotherapy Research, 15, 2, (2001), 127-130 https://doi.org/10.1002/ptr.687
  44. Bent H. Havsteen, The biochemistry and medical significance of the flavonoids, Pharmacology & Therapeutics, 96, 2, (2002), 67-202 https://doi.org/10.1016/S0163-7258(02)00298-X
  45. Jean Fotie, The antiprotozoan potential of flavonoids, Pharmacognosy Reviews, 2, 3, (2008), 6-19
  46. Ali Aberoumand, S. S. Deokule, Comparison of phenolic compounds of some edible plants of Iran and India, Pakistan Journal of Nutrition, 7, 4, (2008), 582-585 https://doi.org/10.3923/pjn.2008.582.585

Last update:

No citation recorded.

Last update: 2024-06-29 09:36:28

No citation recorded.