skip to main content

Metabolite Formation of Pesticide Isoprocarb in Coffee Beans During Short-Term Storage and Condition

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Pondok Cina, Beji, Depok City, West Java 16424, Indonesia

2PT. DITEK JAYA, Kedoya Elok Plaza DA12, Panjang Street, Kebon Jeruk, West Jakarta, 11520, Indonesia

Received: 5 Jan 2024; Revised: 21 Feb 2024; Accepted: 26 Feb 2024; Published: 20 Mar 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Isoprocarb (IPC) is one of the most important carbamate pesticides for white flea control in coffee plants. The prevalence of isoprocarb pesticide residues in coffee, i.e., green coffee beans, is a cause for concern. Green coffee beans were intentionally contaminated with isoprocarb at concentrations >0.01 mg/kg, which was investigated in this research. Quantitative analysis of isoprocarb with the QuEChERS method and qualitative analysis for metabolite formation was characterized using UV-Vis, FTIR, 1H-NMR, GC-MS, and LC-QTOF-MS. Based on the data, the metabolite formed is o-cumenol through the hydrolysis reaction of o-aryl carbamate with the enzyme carboxylesterase. o-cumenol or 2- isopropylphenol as a phenol derivative. To verify the existence of metabolite analytes that are believed to be there in coffee tainted with isoprocarb, more reliable analytical techniques utilizing analytical standards must be developed. Isoprocarb concentrations decreased along the storage time, especially in unsterilized conditions. As a toxic compound, a quantitative structural activity relationship study (QSAR) was initially carried out through a software application for estimating toxicity (TEST) provided by the US Environmental Protection Agency (EPA). For additional information, based on the LC50 and LD50 data confirmed from the TEST application, it was concluded that isoprocarb is more toxic than o-cumenol.
Fulltext View|Download
Keywords: carbamate; isoprocarb; o- cumenol; pesticide; toxicity; coffee beans

Article Metrics:

  1. Muyesaier Tudi, Huada Daniel Ruan, Li Wang, Jia Lyu, Ross Sadler, Des Connell, Cordia Chu, Dung Tri Phung, Agriculture Development, Pesticide Application and Its Impact on the Environment, International Journal of Environmental Research and Public Health, 18, 3, (2021), 1112 https://doi.org/10.3390/ijerph18031112
  2. Tareq M. Osaili, Mohammad Q. Al-Natour, Akram R. Al-Abboodi, Anas Y. Alkarasneh, Nada El Darra, Salma Khazaal, Richard Holley, Detection and risk associated with organochlorine, organophosphorus, pyrethroid and carbamate pesticide residues in chicken muscle and organ meats in Jordan, Food Control, 144, (2023), 109355 https://doi.org/10.1016/j.foodcont.2022.109355
  3. J. Allister Vale, Sally M. Bradberry, Organophosphate and Carbamate Insecticide, in: J. Brent, K. Burkhart, P. Dargan, B. Hatten, B. Megarbane, R. Palmer, J. White (Eds.) Critical Care Toxicology: Diagnosis and Management of the Critically Poisoned Patient, Springer International Publishing, Cham, 2017, https://doi.org/10.1007/978-3-319-17900-1_52
  4. Rajveer Kaur, Gurjot Kaur Mavi, Shweta Raghav, Pesticides classification and its impact on environment, International Journal of Current Microbiology and Applied Sciences, 8, 3, (2019), 1889-1897 https://doi.org/10.20546/ijcmas.2019.803.224
  5. Antonio F. Hernández, Tesifón Parrón, Aristidis M. Tsatsakis, Mar Requena, Raquel Alarcón, Olga López-Guarnido, Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health, Toxicology, 307, (2013), 136-145 https://doi.org/10.1016/j.tox.2012.06.009
  6. Ayu Sitanini, Competitiveness of Indonesian Coffee Exports to Japan, Perwira Journal of Economics & Business, 2, 1, (2022), 72-79 https://doi.org/10.54199/pjeb.v2i1.83
  7. Monavia Ayu Rizaty, Konsumsi Kopi Indonesia Terbesar Kelima di Dunia pada 2021, 2023, Nov 10, (2022), https://dataindonesia.id/agribisnis-kehutanan/detail/konsumsi-kopi-indonesia-terbesar-kelima-di-dunia-pada-2021
  8. Ridhwan Mustajab, Produksi Kopi Indonesia Mencapai 794.800 Ton pada 2022, 2023, Nov 10, (2023), https://dataindonesia.id/agribisnis-kehutanan/detail/produksi-kopi-indonesia-mencapai-794800-ton-pada-2022
  9. Shuqin Liu, Yiquan Huang, Jian Liu, Chao Chen, Gangfeng Ouyang, In Vivo Contaminant Monitoring and Metabolomic Profiling in Plants Exposed to Carbamates via a Novel Microextraction Fiber, Environmental Science & Technology, 55, 18, (2021), 12449-12458 https://doi.org/10.1021/acs.est.1c04368
  10. Harmoko Harmoko, Rahmana Emran Kartasasmita, Astika Tresnawati, QuEChERS Method for the Determination of Pesticide Residues in Indonesian Green Coffee Beans using Liquid Chromatography Tandem Mass Spectrometry, Journal of Mathematical and Fundamental Sciences, 47, 3, (2015), 296-308 https://doi.org/10.5614/j.math.fund.sci.2015.47.3.7
  11. Siti Ilmi Ayu, Uji Kualitatif Senyawa Fenol dan Flavonoid Dalam Ekstrak N-Heksan Daun Senggani (Melastoma malabathricum L.) Menggunakan Metode Kromatografi Lapis Tipis, Jurnal Mahasiswa Farmasi Fakultas Kedokteran UNTAN, 4, 1, (2019), 1-6
  12. Sandhya Mishra, Shimei Pang, Wenping Zhang, Ziqiu Lin, Pankaj Bhatt, Shaohua Chen, Insights into the microbial degradation and biochemical mechanisms of carbamates, Chemosphere, 279, (2021), 130500 https://doi.org/10.1016/j.chemosphere.2021.130500
  13. Walaa Raheem, Alaa Niamah, Hussein O. Muttaleb, Ibrahim A. Murdas, Pesticide Residue Measurements in Raw Milk Based on Optical Spectrum and Neural Networks, Egyptian Journal of Chemistry, 65, 2, (2022), 203-208 https://doi.org/10.21608/ejchem.2021.84298.4125
  14. Abebe Belay, Kassahun Ture, Mesfin Redi, Araya Asfaw, Measurement of caffeine in coffee beans with UV/vis spectrometer, Food Chemistry, 108, 1, (2008), 310-315 https://doi.org/10.1016/j.foodchem.2007.10.024
  15. Eudes Villanueva, Patricia Glorio-Paulet, M. Monica Giusti, Gregory T. Sigurdson, Siyu Yao, Luis E. Rodríguez-Saona, Screening for pesticide residues in cocoa (Theobroma cacao L.) by portable infrared spectroscopy, Talanta, 257, (2023), 124386 https://doi.org/10.1016/j.talanta.2023.124386
  16. Min Li, Xiaoying Zhang, Qiang Jiang, Qualitative Identification of Pesticide Residues in Pakchoi Based on Near Infrared Spectroscopy, IOP Conference Series: Materials Science and Engineering, 466, (2018), 012064 https://doi.org/10.1088/1757-899X/466/1/012064
  17. Sergio Armenta, Guillermo Quintás, Salvador Garrigues, Miguel de la Guardia, A validated and fast procedure for FTIR determination of Cypermethrin and Chlorpyrifos, Talanta, 67, 3, (2005), 634-639 https://doi.org/10.1016/j.talanta.2005.03.008
  18. Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, Fundamentals of Analytical Chemistry, Cengage learning, 2013,
  19. Lestyo Wulandari, Kristiningrum Nia, Fracilia Arinda Ratnasari, Rapid Determination of Total Phenol in Leaf Extracts of a Medicinal Plant using Infrared Spectroscopy and Chemometric Methods, Journal of Analytical Chemistry, 75, (2020), 479-486 https://doi.org/10.1134/S1061934820040176
  20. Adhina Choiri Putri, Tri Novia Yuliana, Meiny Suzery, Agustina Lulustyaningati Nurul Aminin, Total Phenolic, Flavonoid, and LC-MS Analysis of the Ethanolic Extract of Matoa (Pometia pinnata) Leaves from Kudus, Central Java, Indonesia, Jurnal Kimia Sains dan Aplikasi, 26, 12, (2023), 477-482 https://doi.org/10.14710/jksa.26.12.477-482
  21. In Sun Koo, Dildar Ali, Kiyull Yang, Yong Park, Abdelhamid Esbata, Gary W. vanLoon, Erwin Buncel, 31P NMR and ESI-MS studies of metal ion-phosphorus pesticide residue complexes, Canadian Journal of Chemistry, 87, 2, (2009), 433-439 https://doi.org/10.1139/v08-178
  22. European Commission Directorate-General for Health and Food Safety, Nature of pesticides residues in fish, (2021), https://food.ec.europa.eu/document/download/3cb924c2-a651-45d0-89d7-7ce8de6b6dd1_en?filename=pesticides_mrl_guidelines_app-j-10254-2021_en.pdf
  23. Amit Kumar Sharma, Rajeev Kumar Tiwari, Mulayam Singh Gaur, Three dimensional structure prediction and proton nuclear magnetic resonance analysis of toxic pesticides in human blood plasma, Journal of Biomedical Research, 26, 3, (2012), 170-184 https://doi.org/10.7555/JBR.26.20110132
  24. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spectrometric Identification of Organic Compounds, 7th ed., Wiley, 2005,
  25. Dietmar Kennepohl, Steven Farmer, Tim Soderberg, in: UIS: Introduction to Organic Spectroscopy, Chemistry LibreTexts, University of Illinois, Springfield, 2019, https://chem.libretexts.org/@go/page/167098?pdf
  26. Mohamed H. El-Saeid, Ashraf S. Hassanin, Abdulqader Y. Bazeyad, Mubarak T. Al-Otaibi, Rapid analytical method for the determination of 220 pesticide with their isomers by GCMS-TIC, Saudi Journal of Biological Sciences, 28, 8, (2021), 4173-4182 https://doi.org/10.1016/j.sjbs.2021.05.024
  27. William Goodman, Thomas Meaker, The Application of GC–MS to the Analysis of Pesticides on Foodstuffs, The Application Notebook, 10, 1, (2007),
  28. Azadeh Nasiri, Maryam Amirahmadi, Zahra Mousavi, Shahram Shoeibi, Alireza Khajeamiri, Farzad Kobarfard, A multi residue GC-MS method for determination of 12 pesticides in cucumber, Iranian Journal of Pharmaceutical Research: IJPR, 15, 4, (2016), 809-816
  29. Raina Renata, Chemical Analysis of Pesticides Using GC/MS, GC/MS/MS, and LC/MS/MS, in: S. Margarita (Ed.) Pesticides, IntechOpen, Rijeka, 2011, https://doi.org/10.5772/13242
  30. Shizuka Saito-Shida, Satoru Nemoto, Hiroshi Akiyama, Quantitative and Confirmatory Analysis of Pesticide Residues in Cereal Grains and Legumes by Liquid Chromatography–Quadrupole-Time-of-Flight Mass Spectrometry, Foods, 10, 1, (2021), 78 https://doi.org/10.3390/foods10010078
  31. María Ibáñez, Juan V. Sancho, Óscar J. Pozo, Félix Hernández, Use of liquid chromatography quadrupole time-of-flight mass spectrometry in the elucidation of transformation products and metabolites of pesticides. Diazinon as a case study, Analytical and Bioanalytical Chemistry, 384, (2006), 448-457 https://doi.org/10.1007/s00216-005-0167-6
  32. EURL-FV (2015-M19), in, EU Reference Laboratories for Residues of Pesticides, 2015, p. 1-10 https://www.eurl- pesticides.eu/docs/public/tmplt_article.asp?LabID=500&CntID=1001&Theme_ID=1&Pdf=False&Lang=EN
  33. Todd M. Martin, User’s Guide for T. E. S. T. (Toxicity Estimation Software Tool) Version 5.1 A Java Application to Estimate Toxicities and Physical Properties from Molecular Structure, U.S. Environmental Protection Agency, 2020, ^ https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test

Last update:

No citation recorded.

Last update: 2024-11-19 06:01:58

No citation recorded.