skip to main content

Na₂SO₃ Salt Effect on The Ionic Conductivity of Solid Polymer Electrolyte (SPE) Based on Polyvinyl Alcohol

1Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia

2Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Received: 12 Feb 2024; Revised: 2 Apr 2024; Accepted: 28 Apr 2024; Published: 31 May 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Free Standing Solid Polymer Electrolyte
Abstract

This research is about solid polymer electrolyte (SPE) based on polyvinyl alcohol (PVA) synthesized using a solution casting technique by adding variations of sodium sulfite salt and glycerol as fillers to reduce the samples' bulk resistance for electrochemical energy storage application. The method used is a quantitative analysis based on the test results. X-ray Diffraction (XRD) was used to determine the crystallinity and structure of the solid polymer electrolyte material. Interactions between Na+ ions from salts in SPE were analyzed using Fourier transform infrared (FTIR). The mechanical properties of the SPE samples were analyzed using tensile testing (ultimate tensile strength). Solid polymer electrolyte (SPE) ion conductivity was analyzed using electrochemical impedance spectroscopy (EIS) with temperature variations of 25, 40, 50, 60, and 70°C. The maximum SPE ionic conductivity value is 1.05 × 10-5 S cm-1 in a PVA-Glycerol-Na2SO3 15% sample at 70°C.

Fulltext View|Download
Keywords: Solid Polymer electrolyte (SPE); Polyvinyl Alcohol (PVA); Sodium Sulfite; amorphous; Ionic Conductivity
Funding: UPERESEARCH 2022 Research Grant under contract 0333B/UP-R/SK/HK.01/X/2022

Article Metrics:

  1. Tengku Azirudin, Potensi Tenaga Angin Di Atas Bangunan Bertingkat di Pangkalan Kerinci, Kabupaten Pelalawan Provinsi Riau, 2019
  2. Muhamad Azhar, Solechan Solechan, Retno Saraswati, Putut Suharso, Suhartoyo Suhartoyo, Budi Ispriyarso, The New Renewable Energy Consumption Policy of Rare Earth Metals to Build Indonesia's National Energy Security, The 1st Sriwijaya International Conference on Environmental Issues 2018 (1st SRICOENV 2018), 2018 https://doi.org/10.1051/e3sconf/20186803008
  3. Djoni Hartono, Arief Anshory Yusuf, Sasmita Hastri Hastuti, Novani Karina Saputri, Noor Syaifudin, Effect of COVID-19 on energy consumption and carbon dioxide emissions in Indonesia, Sustainable Production and Consumption, 28, (2021), 391-404 https://doi.org/10.1016/j.spc.2021.06.003
  4. Aan Jaelani, Slamet Firdaus, Juju Jumena, Renewable Energy Policy in Indonesia: The Qur'anic Scientific Signals in Islamic Economics Perspective, International Journal of Energy Economics and Policy, 7, 4, (2017), 193-204
  5. J. Mitali, S. Dhinakaran, A. A. Mohamad, Energy storage systems: a review, Energy Storage and Saving, 1, 3, (2022), 166-216 https://doi.org/10.1016/j.enss.2022.07.002
  6. Harsh Kumar, Kamil Kuča, Shashi Kant Bhatia, Kritika Saini, Ankur Kaushal, Rachna Verma, Tek Chand Bhalla, Dinesh Kumar, Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens, Sensors, 20, 7, (2020), 1966 https://doi.org/10.3390/s20071966
  7. Muhammad Syukri Mohamad Misenan, Azwani Sofia Ahmad Khiar, Tarık Eren, Polyurethane-based polymer electrolyte for lithium ion batteries: a review, Polymer International, 71, 7, (2022), 751-769 https://doi.org/10.1002/pi.6395
  8. Jayeeta Chattopadhyay, Tara Sankar Pathak, Diogo M. F. Santos, Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review, Polymers, 15, 19, (2023), 3907 https://doi.org/10.3390/polym15193907
  9. Agathe Naboulsi, Ronan Chometon, François Ribot, Giao Nguyen, Odile Fichet, Christel Laberty-Robert, Correlation between Ionic Conductivity and Mechanical Properties of Solid-like PEO-based Polymer Electrolyte, ACS Applied Materials & Interfaces, 16, 11, (2024), 13869-13881 https://doi.org/10.1021/acsami.3c19249
  10. D. R. Lu, C. M. Xiao, S. J. Xu, Starch-based completely biodegradable polymer materials, Express polymer letters, 3, 6, (2009), 366-375 https://doi.org/10.3144/expresspolymlett.2009.46
  11. Nihed Ben Halima, Poly(vinyl alcohol): review of its promising applications and insights into biodegradation, RSC Advances, 6, 46, (2016), 39823-39832 https://doi.org/10.1039/C6RA05742J
  12. M. Ue, Secondary Batteries – Lithium Rechargeable Systems | Electrolytes: Nonaqueous, in: J. Garche (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, https://doi.org/10.1016/B978-044452745-5.00207-0
  13. M. S. M. Misenan, A. S. A. Khiar, Conduction Mechanism of Chitosan/Methylcellulose/1-Butyl-3 Methyl Imidazolium Bis (Trifluoromethylsulfonyl) Imide (BMIMTFSI) Biopolymer Electrolyte Doped with Ammonium Triflate, Malaysian Journal of Chemistry, 22, 4, (2020), 1-13
  14. M. S. M. Misenan, A. S. A. Khiar, Optimization of methyl cellulose biopolymer electrolyte conductivity via response surface methodology, Next Materials, 3, (2024), 100089 https://doi.org/10.1016/j.nxmate.2023.100089
  15. Xinxin Cai, Zhiyu Hu, Wentao Deng, Hongshuai Hou, Xiaobo Ji, Guoqiang Zou, Insight into the Improvement Strategies of Aqueous Electrolyte for Aqueous Rechargeable Batteries, Batteries & Supercaps, 7, 5, (2024), e202300619 https://doi.org/10.1002/batt.202300619
  16. D. B. Kal’nyi, V. V. Kokovkin, I. V. Mironov, Sodium sulfite: A promising reagent in the electrochemical oxidation of metallic silver, Russian Journal of General Chemistry, 81, 5, (2011), 793-798 https://doi.org/10.1134/S107036321105001X
  17. Ashish Raj, Kushal Mehrotra, S. P. Pandey, S. Venkatesan Jayakumar, Amit Saxena, Bhaskar Bhattacahrya, Humidity Effect on Ionic Conductivity of Composite Polymer Electrolytes, Macromolecular Symposia, 407, 1, (2023), 2100467 https://doi.org/10.1002/masy.202100467
  18. Andrei A. Bunaciu, Vu Dang Hoang, Hassan Y. Aboul-Enein, Applications of FT-IR Spectrophotometry in Cancer Diagnostics, Critical Reviews in Analytical Chemistry, 45, 2, (2015), 156-165 https://doi.org/10.1080/10408347.2014.904733
  19. A. C. W. Ong, N. A. Shamsuri, S. N. A. Zaine, Dedikarni Panuh, M. F. Shukur, Nanocomposite polymer electrolytes comprising starch-lithium acetate and titania for all-solid-state supercapacitor, Ionics, 27, 2, (2021), 853-865 https://doi.org/10.1007/s11581-020-03856-3
  20. Fatin Farhana Awang, Mohd Faiz Hassan, Khadijah Hilmun Kamarudin, Corn starch doped with sodium iodate as solid polymer electrolytes for energy storage applications, Acta Polytechnica, 61, 4, (2021), 497-503 https://doi.org/10.14311/AP.2021.61.0497
  21. S. Shanmuga Priya, M. Karthika, S. Selvasekarapandian, R. Manjuladevi, Preparation and characterization of polymer electrolyte based on biopolymer I-Carrageenan with magnesium nitrate, Solid State Ionics, 327, (2018), 136-149 https://doi.org/10.1016/j.ssi.2018.10.031
  22. Yushi Fujita, Yusuke Kawasaki, Takeaki Inaoka, Takuya Kimura, Atsushi Sakuda, Masahiro Tatsumisago, Akitoshi Hayashi, Amorphous Li2O–LiI Solid Electrolytes Compatible to Li Metal, Electrochemistry, 89, 4, (2021), 334-336 https://doi.org/10.5796/electrochemistry.21-00049
  23. Christie L. C. Ellis, Emily Smith, Hamza Javaid, Gabrielle Berns, Dhandapani Venkataraman, Chapter 6 - Ion Migration in Hybrid Perovskites: Evolving Understanding of a Dynamic Phenomenon, in: S. Thomas, A. Thankappan (Eds.) Perovskite Photovoltaics, Academic Press, 2018, https://doi.org/10.1016/B978-0-12-812915-9.00006-X
  24. Mohamad Rafi, Widia Citra Anggundari, Tun Tedja Irawadi, Potensi spektroskopi FTIR-ATR dan kemometrik untuk membedakan rambut babi, kambing, dan sapi, Indonesian journal of chemical science, 5, 3, (2016), 229-234
  25. Asep Bayu Dani Nandiyanto, Rosi Oktiani, Risti Ragadhita, How to Read and Interpret FTIR Spectroscope of Organic Material, Indonesian Journal of Science and Technology, 4, 1, (2019), 97-118 https://doi.org/10.17509/ijost.v4i1.15806
  26. Yichao Wu, Anmin Huang, Shuhong Fan, Yuejun Liu, Xiaochao Liu, Crystal Structure and Mechanical Properties of Uniaxially Stretched PA612/SiO2 Films, Polymers, 12, 3, (2020), 711 https://doi.org/10.3390/polym12030711
  27. Ana Carolina Marques, Tomás Pinheiro, Gabriela Vieira Martins, Ana Rita Cardoso, Rodrigo Martins, Maria Goreti Sales, Elvira Fortunato, Chapter Seven - Non-enzymatic lab-on-paper devices for biosensing applications, in: A. Merkoçi (Ed.) Comprehensive Analytical Chemistry, Elsevier, 2020, https://doi.org/10.1016/bs.coac.2020.05.001
  28. Dimas Rio Priyambodo, Sintesis dan Karakterisasi Polimer Elektrolit PEO/NaClO4/Fly Ash PT. Tjiwi Kimia Mojokerto Pada Baterai Ion Natrium, Kimia, Institut Teknologi Sepuluh Nopember, 2017
  29. M. N. Hafiza, M. I. N. Isa, Solid polymer electrolyte production from 2-hydroxyethyl cellulose: Effect of ammonium nitrate composition on its structural properties, Carbohydrate Polymers, 165, (2017), 123-131 https://doi.org/10.1016/j.carbpol.2017.02.033
  30. N. Farah, H. M. Ng, Arshid Numan, Chiam-Wen Liew, N. A. A. Latip, K. Ramesh, S. Ramesh, Solid polymer electrolytes based on poly(vinyl alcohol) incorporated with sodium salt and ionic liquid for electrical double layer capacitor, Materials Science and Engineering: B, 251, (2019), 114468 https://doi.org/10.1016/j.mseb.2019.114468

Last update:

No citation recorded.

Last update: 2024-07-17 06:38:03

No citation recorded.