skip to main content

Performance Study of NiO-TiO₂-CuO Nanocomposite Supported by Reduced Graphene Oxide as an Anode Candidate for Lithium-Ion Battery Development

1Department of Chemistry, Faculty of Science Technology and Health, Institut Sains Teknologi dan Kesehatan (ISTEK) ‘Aisyiyah Kendari, Kendari, 93116, Southeast Sulawesi, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Southeast Sulawesi, Indonesia

3Nickel Research Institute, Universitas Muhammadiyah Kendari, Jl. K.H. Ahmad Dahlan No. 10 Kendari, Southeast Sulawesi, Indonesia

Received: 29 Sep 2024; Revised: 4 Feb 2025; Accepted: 27 Feb 2025; Published: 28 Feb 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

In an effort to enhance the performance of lithium-ion batteries (LIBs), this study developed a NiO-TiO2-CuO nanocomposite supported by reduced graphene oxide (rGO) as an anode material. The nanocomposite was synthesized via a hydrothermal method and characterized using FTIR, XRD, and SEM-EDX techniques to understand its structure and material properties. The FTIR spectrum confirmed the presence of C=C bonds (1612-1512 cm-1) and C–O bonds (1147-1099 cm-1) from rGO, as well as Ni-O (408 cm-1), Cu-O (669 cm-1), and Ti-O (549 cm-1). The XRD patterns revealed the crystalline phases of NiO at 2θ = 37° (111), 43° (200), and 62.8° (200); TiO2 at 2θ = 25.3° (101), 48° (101), and 55° (211); and Cu-O at 2θ = 35.6° (111) and 39.8° (022). SEM-EDX images showed small aggregated particles forming a relatively uneven surface with spherical morphology, with an average particle size of 33.25 nm. Electrochemical testing using cyclic voltammetry (CV) demonstrated that the material exhibited a stable specific capacity (Csp) of 6.3 mAh/g after five cycles at a scan rate of 1 V/s. Additionally, the specific capacity significantly increased to 44.15 mAh/g at a scan rate of 0.05 V/s, indicating excellent electrochemical performance. These results suggest that the NiO-TiO2-CuO/rGO nanocomposite has potential as an efficient anode material for lithium-ion battery applications, offering good cycle stability and enhanced energy storage capacity.

Fulltext View|Download
Keywords: NiO-TiO2-CuO/rGO; Reduced graphene oxide; Cyclic voltammetry; Electrochemistry; Specific capacity
Funding: Ministry of Education, Culture, Research and Technology of the Republic of Indonesia under contract 111/E5/PG.02.00.PL/2024 and 576/LL9/PK.00.PG/2024, 04/K/LPPM/ISTEK-AK/VI/2024

Article Metrics:

  1. Lukas Mauler, Fabian Duffner, Wolfgang G. Zeier, Jens Leker, Battery cost forecasting: a review of methods and results with an outlook to 2050, Energy & Environmental Science, 14, 9, (2021), 4712-4739 https://doi.org/10.1039/D1EE01530C
  2. Huili Shi, Chaoyun Shi, Zhitong Jia, Long Zhang, Haifeng Wang, Jingbo Chen, Titanium dioxide-based anode materials for lithium-ion batteries: structure and synthesis, RSC Advances, 12, 52, (2022), 33641-33652 https://doi.org/10.1039/D2RA05442F
  3. Mingbo Zheng, Hao Tang, Lulu Li, Qin Hu, Li Zhang, Huaiguo Xue, Huan Pang, Hierarchically Nanostructured Transition Metal Oxides for Lithium-Ion Batteries, Advanced Science, 5, 3, (2018), 1700592 https://doi.org/10.1002/advs.201700592
  4. Yongchao Huang, Hao Yang, Tuzhi Xiong, David Adekoya, Weitao Qiu, Zhongmin Wang, Shanqing Zhang, M. Sadeeq Balogun, Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries, Energy Storage Materials, 25, (2020), 41-51 https://doi.org/10.1016/j.ensm.2019.11.001
  5. Chunxiao Lv, Xianfeng Yang, Ahmad Umar, Yanzhi Xia, Yi Jia, Lu Shang, Tierui Zhang, Dongjiang Yang, Architecture-controlled synthesis of MxOy (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes, Journal of Materials Chemistry A, 3, 45, (2015), 22708-22715 https://doi.org/10.1039/C5TA06393K
  6. Bakht Mand Khan, Won Chun Oh, Prawit Nuengmatch, Kefayat Ullah, Role of graphene-based nanocomposites as anode material for Lithium-ion batteries, Materials Science and Engineering: B, 287, (2023), 116141 https://doi.org/10.1016/j.mseb.2022.116141
  7. Wenxing Liu, Tianhao Yao, Sanmu Xie, Yiyi She, Hongkang Wang, Integrating TiO2/SiO2 into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance, Nanomaterials, 9, 1, (2019), 68 https://doi.org/10.3390/nano9010068
  8. Xiaoyu Dong, Xing Zheng, Yichen Deng, Lingfeng Wang, Haiping Hong, Zhicheng Ju, SiO2/N-doped graphene aerogel composite anode for lithium-ion batteries, Journal of Materials Science, 55, 27, (2020), 13023-13035 https://doi.org/10.1007/s10853-020-04905-y
  9. Junke Ou, Shugen Wu, Lin Yang, Hao Wang, Facile Preparation of NiO@graphene Nanocomposite with Superior Performances as Anode for Li-ion Batteries, Acta Metallurgica Sinica (English Letters), 35, 2, (2022), 212-222 https://doi.org/10.1007/s40195-021-01283-5
  10. Song Liu, Hongying Hou, Xianxi Liu, Jixiang Duan, Yuan Yao, Qishu Liao, High-performance hierarchical cypress-like CuO/Cu2O/Cu anode for lithium ion battery, Ionics, 23, 5, (2017), 1075-1082 https://doi.org/10.1007/s11581-016-1933-5
  11. Xun Sun, Zhe Wang, Xinping Ai, Jinping Zhou, CuO nanosheets embedded on carbon microspheres as high-performance anode material in lithium-ion batteries, Science China Materials, 66, 8, (2023), 3026-3038 https://doi.org/10.1007/s40843-023-2452-4
  12. M. Mancini, F. Nobili, R. Tossici, M. Wohlfahrt-Mehrens, R. Marassi, High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose, Journal of Power Sources, 196, 22, (2011), 9665-9671 https://doi.org/10.1016/j.jpowsour.2011.07.028
  13. Yue Wang, Suqin Liu, Kelong Huang, Dong Fang, Shuxin Zhuang, Electrochemical properties of freestanding TiO2 nanotube membranes annealed in Ar for lithium anode material, Journal of Solid State Electrochemistry, 16, 2, (2012), 723-729 https://doi.org/10.1007/s10008-011-1417-5
  14. Zhen Wei, Zheng Liu, Rongrong Jiang, Chaoqing Bian, Tao Huang, Aishui Yu, TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries, Journal of Solid State Electrochemistry, 14, 6, (2010), 1045-1050 https://doi.org/10.1007/s10008-009-0910-6
  15. Tamilselvan Appadurai, Chandrasekar M. Subramaniyam, Rajesh Kuppusamy, Smagul Karazhanov, Balakumar Subramanian, Electrochemical Performance of Nitrogen-Doped TiO2 Nanotubes as Electrode Material for Supercapacitor and Li-Ion Battery, Molecules, 24, 16, (2019), 2952 https://doi.org/10.3390/molecules24162952
  16. Zhenguo Yang, Daiwon Choi, Sebastien Kerisit, Kevin M. Rosso, Donghai Wang, Jason Zhang, Gordon Graff, Jun Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review, Journal of Power Sources, 192, 2, (2009), 588-598 https://doi.org/10.1016/j.jpowsour.2009.02.038
  17. Guojian Li, Hao Hu, Qiancheng Zhu, Ying Yu, Interconnected mesoporous NiO sheets deposited onto TiO2 nanosheet arrays as binder-free anode materials with enhanced performance for lithium ion batteries, RSC Advances, 5, 122, (2015), 101247-101256 https://doi.org/10.1039/C5RA16894E
  18. Zehua Chen, Yu Gao, Qixiang Zhang, Liangliang Li, Pengcheng Ma, Baolin Xing, Jianliang Cao, Guang Sun, Hari Bala, Chuanxiang Zhang, Zhanying Zhang, Yanyang zeng, TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries, Journal of Alloys and Compounds, 774, (2019), 873-878 https://doi.org/10.1016/j.jallcom.2018.10.010
  19. Tereza M. Paronyan, Arjun Kumar Thapa, Andriy Sherehiy, Jacek B. Jasinski, John Samuel Dilip Jangam, Incommensurate Graphene Foam as a High Capacity Lithium Intercalation Anode, Scientific Reports, 7, (2017), 39944 https://doi.org/10.1038/srep39944
  20. Hassan Abbas Alshamsi, Sura K. Ali, Salam H. Alwan Altaa, Green Synthesis and Characterization of Reduced Graphene Oxide (RGO) using Sabdarriffa L extract and its Solubility Property, Journal of Physics: Conference Series, 1664, (2020), 012058 https://doi.org/10.1088/1742-6596/1664/1/012058
  21. Hong-En Wang, Xu Zhao, Xuecheng Li, Zhenyu Wang, Chaofeng Liu, Zhouguang Lu, Wenjun Zhang, Guozhong Cao, rGO/SnS2/TiO2 heterostructured composite with dual-confinement for enhanced lithium-ion storage, Journal of Materials Chemistry A, 5, 47, (2017), 25056-25063 https://doi.org/10.1039/C7TA08616D
  22. La Ode Agus Salim, Muhammad Zakir Muzakkar, Ahmad Zaeni, Maulidiyah Maulidiyah, Muhammad Nurdin, Siti Naqiyah Sadikin, Jaenuddin Ridwan, Akrajas Ali Umar, Improved photoactivity of TiO2 photoanode of dye-sensitized solar cells by sulfur doping, Journal of Physics and Chemistry of Solids, 175, (2023), 111224 https://doi.org/10.1016/j.jpcs.2023.111224
  23. Manmohan Lal, Praveen Sharma, Chhotu Ram, Synthesis and photocatalytic potential of Nd-doped TiO2 under UV and solar light irradiation using a sol-gel ultrasonication method, Results in Materials, 15, (2022), 100308 https://doi.org/10.1016/j.rinma.2022.100308
  24. Nasriadi Dali, Alfina Amelia Amasi, Irwan Irwan, Faizal Mustapa, Maulidiyah Maulidiyah, Muhammad Nurdin, Highly sensitive determination of Pb (II) ions using graphene paste electrode modified TiO2-ionophore calix[6]arene composite, AIP Conference Proceedings, 2719, 1, (2023), 030015 https://doi.org/10.1063/5.0133282
  25. Zul Arham, Annisa Zalfa Al Ikhwan, Muhammad Edihar, Abdul Haris Watoni, Irwan Irwan, Muhammad Nurdin, Maulidiyah Maulidiyah, Green Pesticide High Activity Based on TiO2 Nanosuspension Incorporated Silver Microspheres Against Phytophthora palmivora, Indian Journal of Microbiology, 64, 4, (2024), 1826-1834 https://doi.org/10.1007/s12088-024-01239-0
  26. Xiaoyan Wang, Dong Zhao, Chao Wang, Yonggao Xia, Wenshuai Jiang, Senlin Xia, Shanshan Yin, Xiuxia Zuo, Ezzeldin Metwalli, Ying Xiao, Zaicheng Sun, Jin Zhu, Peter Müller-Buschbaum, Ya-Jun Cheng, Role of Nickel Nanoparticles in High-Performance TiO2/Ni/Carbon Nanohybrid Lithium/Sodium-Ion Battery Anodes, Chemistry – An Asian Journal, 14, 9, (2019), 1557-1569 https://doi.org/10.1002/asia.201900231
  27. Hong Zhang, Binqiang Tian, Jian Xue, Guoqing Ding, Xiaoming Ji, Yang Cao, Hierarchical non-woven fabric NiO/TiO2 film as an efficient anode material for lithium-ion batteries, RSC Advances, 9, 43, (2019), 24682-24687 https://doi.org/10.1039/C9RA04947A
  28. Chun-Yan Geng, Jin Yu, Fa-Nian Shi, Few-layers of graphene modified TiO2/graphene composites with excellent electrochemical properties for lithium-ion battery, Ionics, 25, 7, (2019), 3059-3068 https://doi.org/10.1007/s11581-019-02894-w
  29. Gang Wang, Qian Zhang, Kai Zhang, Bo Gu, Lin Cheng, Qiaojun Nie, Ming Zhang, Zhongrong Shen, Designing High-mass Loading 2D Ni-TiO2/graphene Pellet Electrodes for Lithium Metal Batteries, ChemistrySelect, 8, 21, (2023), e202300961 https://doi.org/10.1002/slct.202300961
  30. Thamrin Azis, Lintan Ashari, Muhammad Zakir Muzakkar, Muhammad Nurdin, La Ode Muhammad Zuhdi Mulkiyan, La Ode Agus Salim, Muh Edihar, Akrajas Ali Umar, Enhancing cyclic voltammetry performance with N-graphene -supported coupled NiO/TiO2 hollow nanospheres as superior anode material, Chemical Papers, 78, 8, (2024), 4719-4731 https://doi.org/10.1007/s11696-024-03408-3
  31. Muhammad Helmi Abdul Kudus, Muhammad Razlan Zakaria, Hazizan Md Akil, Faheem Ullah, Fatima Javed, Oxidation of graphene via a simplified Hummers’ method for graphene-diamine colloid production, Journal of King Saud University - Science, 32, 1, (2020), 910-913 https://doi.org/10.1016/j.jksus.2019.05.002
  32. K. Narasimharao, G. Venkata Ramana, D. Sreedhar, V. Vasudevarao, Synthesis of graphene oxide by modified hummers method and hydrothermal synthesis of graphene-NiO nano composite for supercapacitor application, Journal of Material Sciences & Engineering, 5, 6, (2016), 1000284
  33. Ji Chen, Bowen Yao, Chun Li, Gaoquan Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64, (2013), 225-229 https://doi.org/10.1016/j.carbon.2013.07.055
  34. Ghulam Ali, Asad Mehmood, Heung Yong Ha, Jaehoon Kim, Kyung Yoon Chung, Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries, Scientific Reports, 7, 1, (2017), 40910 https://doi.org/10.1038/srep40910
  35. Mahendra Singh Yadav, S. K. Tripathi, Synthesis and characterization of nanocomposite NiO/activated charcoal electrodes for supercapacitor application, Ionics, 23, 10, (2017), 2919-2930 https://doi.org/10.1007/s11581-017-2026-9
  36. Umesh P. Gawai, Shilpa D. Kamble, Sanjay K. Gurav, Manvendra N. Singh, Ashok K. Yadav, Shambhu N. Jha, Niranjan P. Lalla, Milind R. Bodke, Mahendra D. Shirsat, Babasaheb N. Dole, Microwave-Assisted Coprecipitation Synthesis and Local Structural Investigation on NiO, β-Ni(OH)2/Co3O4 Nanosheets, and Co3O4 Nanorods Using X-ray Absorption Spectroscopy at Co–Ni K-edge and Synchrotron X-ray Diffraction, ACS Omega, 7, 8, (2022), 6700-6709 https://doi.org/10.1021/acsomega.1c06179
  37. Anadi Krishna Atul, Sunil Kumar Srivastava, Ajai Kumar Gupta, Neelabh Srivastava, Synthesis and Characterization of NiO Nanoparticles by Chemical Co-precipitation Method: an Easy and Cost-Effective Approach, Brazilian Journal of Physics, 52, 1, (2021), 2 https://doi.org/10.1007/s13538-021-01006-2
  38. Anita Sagadevan Ethiraj, Dae Joon Kang, Synthesis and characterization of CuO nanowires by a simple wet chemical method, Nanoscale Research Letters, 7, 1, (2012), 70 https://doi.org/10.1186/1556-276X-7-70
  39. Thi Ha Tran, Viet Tuyen Nguyen, Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review, International Scholarly Research Notices, 2014, 1, (2014), 856592 https://doi.org/10.1155/2014/856592
  40. Alina Matei, Gabriel Craciun, Cosmin Romanitan, Cristina Pachiu, Vasilica Tucureanu, Biosynthesis and Characterization of Copper Oxide Nanoparticles, Engineering Proceedings, 37, 1, (2023), 54 https://doi.org/10.3390/ECP2023-14629
  41. Yu-Feng Sun, Wang Jian, Pei-Hua Li, Meng Yang, Xing-Jiu Huang, Highly sensitive electrochemical detection of Pb(II) based on excellent adsorption and surface Ni(II)/Ni(III) cycle of porous flower-like NiO/rGO nanocomposite, Sensors and Actuators B: Chemical, 292, (2019), 136-147 https://doi.org/10.1016/j.snb.2019.04.131
  42. Marilena Carbone, Elvira Maria Bauer, Laura Micheli, Mauro Missori, NiO morphology dependent optical and electrochemical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, (2017), 178-182 https://doi.org/10.1016/j.colsurfa.2017.05.046
  43. Kamal Batra, Sasmita Nayak, Sanjay K. Behura, Omkar Jani, Optimizing Performance Parameters of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell, Journal of Nanoscience and Nanotechnology, 15, 7, (2015), 4877-4882 https://doi.org/10.1166/jnn.2015.9818
  44. Pietro Steiner, Nanoscopic infrared characterisation of graphene oxide, University of Manchester Manchester, UK, 2018
  45. M. Sathish, B. Viswanathan, R. P. Viswanath, Chinnakonda S. Gopinath, Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst, Chemistry of Materials, 17, 25, (2005), 6349-6353 https://doi.org/10.1021/cm052047v
  46. Xili Lu, Xiuqian Lv, Zhijie Sun, Yufeng Zheng, Nanocomposites of poly(L-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization, European Polymer Journal, 44, 8, (2008), 2476-2481 https://doi.org/10.1016/j.eurpolymj.2008.06.002
  47. L. S. Chougala, M. S. Yatnatti, R. K. Linganagoudar, R. R. Kamble, J. S. Kadadevarmath, A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells, Journal of Nano- and Electronic Physics, 9, 4, (2017), 04005
  48. Sung-Jei Hong, Hyuk-Jun Mun, Byeong-Jun Kim, Young-Sung Kim, Characterization of Nickel Oxide Nanoparticles Synthesized under Low Temperature, Micromachines, 12, 10, (2021), 1168 https://doi.org/10.3390/mi12101168
  49. Prateek Viprya, Dhruva Kumar, Suhas Kowshik, Study of Different Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO), Engineering Proceedings, 59, 1, (2023), 84 https://doi.org/10.3390/engproc2023059084
  50. M. M. El-Desoky, Ibrahim Morad, M. H. Wasfy, A. F. Mansour, Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite films with different TiO2 phases prepared by sol–gel technique, Journal of Materials Science: Materials in Electronics, 31, 20, (2020), 17574-17584 https://doi.org/10.1007/s10854-020-04313-7
  51. Zhe Li, Qinghua Yan, Qian Jiang, Yanshan Gao, Tianshan Xue, Renna Li, Yuefeng Liu, Qiang Wang, Oxygen vacancy mediated CuyCo3-yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect, Applied Catalysis B: Environmental, 269, (2020), 118827 https://doi.org/10.1016/j.apcatb.2020.118827
  52. Harini S., Anto Feradrick Samson V., Victor Antony Raj M., Madhavan J., Fabrication of NiO/TiO2/rGO nanocomposites as a quasi-solid-state asymmetric supercapacitor: Paving the way for PhotoSupercapacitor application, Materials Today Sustainability, 28, (2024), 100972 https://doi.org/10.1016/j.mtsust.2024.100972
  53. R. Rameshbabu, Niraj Kumar, Gina Pecchi, Eduardo J. Delgado, C. Karthikeyan, R. V. Mangalaraja, Ultrasound-assisted synthesis of rGO supported NiO-TiO2 nanocomposite: An efficient superior sonophotocatalyst under diffused sunlight, Journal of Environmental Chemical Engineering, 10, 3, (2022), 107701 https://doi.org/10.1016/j.jece.2022.107701
  54. Jelena D. Jovanovic, Stevan N. Blagojevic, Borivoj K. Adnadjevic, The Effects of rGO Content and Drying Method on the Textural, Mechanical, and Thermal Properties of rGO/Polymer Composites, Polymers, 15, 5, (2023), 1287 https://doi.org/10.3390/polym15051287
  55. Jürgen Janek, Wolfgang G. Zeier, A solid future for battery development, Nature Energy, 1, 9, (2016), 16141 https://doi.org/10.1038/nenergy.2016.141
  56. A. W. P. Fung, Z. H. Wang, K. Lu, M. S. Dresselhaus, R. W. Pekala, Characterization of carbon aerogels by transport measurements, Journal of Materials Research, 8, 8, (1993), 1875-1885 https://doi.org/10.1557/JMR.1993.1875
  57. Taehoon Kim, Luis K. Ono, Nicole Fleck, Sonia R. Raga, Yabing Qi, Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes, Journal of Materials Chemistry A, 6, 29, (2018), 14449-14463 https://doi.org/10.1039/C8TA02622J
  58. Changjun Zhang, Deconvoluting degradation mechanisms, Nature Energy, 9, 9, (2024), 1051-1051 https://doi.org/10.1038/s41560-024-01646-z
  59. Dong Yan, Caiyan Yu, Xiaojie Zhang, Jiabao Li, Junfeng Li, Ting Lu, Likun Pan, Enhanced electrochemical performances of anatase TiO2 nanotubes by synergetic doping of Ni and N for sodium-ion batteries, Electrochimica Acta, 254, (2017), 130-139 https://doi.org/10.1016/j.electacta.2017.09.120

Last update:

No citation recorded.

Last update: 2025-03-26 02:32:15

No citation recorded.