skip to main content

Effect of Polylactic Acid on Mechanical, Chemical, Thermal, Morphology, Water Absorption, and Biodegradability Characteristics of Degradable Plastic from Durian Peel Waste

1Material Engineering Department, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia

2Center of Excellence Technology, Natural Polymer, and Recycle Plastics, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia

3Chemical Engineering Department, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia

4 Department of Renewable Energy Engineering, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia

5 Chemical Engineering Department, Syiah Kuala University, Banda Aceh 23111, Aceh, Indonesia

View all affiliations
Received: 23 Aug 2025; Revised: 22 Jan 2026; Accepted: 26 Jan 2026; Published: 7 Feb 2026.
Open Access Copyright 2026 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Durian peels consist of cellulose, a potential base material for producing sustainable products, particularly degradable plastics. This study examines the impact of polylactic acid (PLA) blends on the degradable plastics derived from durian peel (Durio zibethinus). The mechanical characteristics of the degradable plastics: tensile strength of 2.5671–9.3498 MPa, elongation of 31–96%, and Young’s modulus of 161.32–219.95 MPa. The analysis of the compound revealed the presence of the alcohol monomer (O-H), alkanes and aromatic rings (C-H), carbonyl (C=O), and alkenes (C-O) groups. The potential for soil microbes to decompose these groups is also a consideration, given their hydrophilic nature, which enables them to bind to water. X-ray fluorescence (XRF) analysis of the degradable plastic sample revealed the presence of 13 elements: Mg, Ca, Al, P, Fe, Cl, K, Sr, Zn, Sc, Rh, S, and Si. In this study, no harmful metal contaminants (Pb, Hg, or Cd) were identified. Thermal analysis, encompassing a temperature range from 357.67°C to 443.67°C, has been instrumental in identifying the phase transition that marks the onset of extreme weight loss during crystallization. Morphological analysis revealed incomplete dissolution, leading to a nonuniform shape. Solubility is directly proportional to the duration of the stirring process. The degradable plastic with the least swelling is composed of 3.5 g of cellulose and 3 g of PLA, exhibiting a degree of swelling of 4.89%. The degradable plastic is predicted to decompose most rapidly after 56 days with a PLA content of 3 g. This experimental result aligns with the provisions outlined in ASTM D2096, a standard that establishes a maximum time limit of 180 days for the degradation of plastics.
Fulltext View|Download
Keywords: peels; cellulose; sustainable products; polylactic acid; degradable plastics
Funding: This study was funded by the non-tax State Revenue (PNBP) under contract 123/PPK-2/SWK-II/AL.04/2025 with reference code 25.01.FT.20 Malikussaleh University Fiscal Year 2025.

Article Metrics:

  1. Žaneta Stasiškienė, Jelena Barbir, Lina Draudvilienė, Zhi Kai Chong, Kerstin Kuchta, Viktoria Voronova, Walter Leal Filho, Challenges and Strategies for Bio-Based and Biodegradable Plastic Waste Management in Europe, Sustainability, 14, 24, (2022), 16476 https://doi.org/10.3390/su142416476
  2. Lorenzo Bartolucci, Stefano Cordiner, Emanuele De Maina, Gopalakrishnan Kumar, Pietro Mele, Vincenzo Mulone, Bartłomiej Igliński, Grzegorz Piechota, Sustainable Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers, International Journal of Molecular Sciences, 24, 9, (2023), 7696 https://doi.org/10.3390/ijms24097696
  3. Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe, Thandi Patricia Gumede, Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications, Polymers, 17, 14, (2025), 1947 https://doi.org/10.3390/polym17141947
  4. Ditimoni Dutta, Nandan Sit, A comprehensive review on types and properties of biopolymers as sustainable bio-based alternatives for packaging, Food Biomacromolecules, 1, 2, (2024), 58-87 https://doi.org/10.1002/fob2.12019
  5. Hadi Seddiqi, Erfan Oliaei, Hengameh Honarkar, Jianfeng Jin, Lester C. Geonzon, Rommel G. Bacabac, Jenneke Klein-Nulend, Cellulose and its derivatives: towards biomedical applications, Cellulose, 28, 4, (2021), 1893-1931 https://doi.org/10.1007/s10570-020-03674-w
  6. Masrat Rasheed, Mohammad Jawaid, Bisma Parveez, Bamboo Fiber Based Cellulose Nanocrystals/Poly(Lactic Acid)/Poly(Butylene Succinate) Nanocomposites: Morphological, Mechanical and Thermal Properties, Polymers, 13, 7, (2021), 1076 https://doi.org/10.3390/polym13071076
  7. Noorul Hidayah Yusoff, Kaushik Pal, Thinakaran Narayanan, Fernando Gomes de Souza, Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapioca starch for packaging applications, Journal of Molecular Structure, 1232, (2021), 129954 https://doi.org/10.1016/j.molstruc.2021.129954
  8. Mouna Werchefani, Catherine Lacoste, Hafedh Belguith, Ali Gargouri, Chedly Bradai, Effect of chemical and enzymatic treatments of alfa fibers on polylactic acid bio-composites properties, Journal of Composite Materials, 54, 30, (2020), 4959-4967 https://doi.org/10.1177/0021998320941579
  9. Nawadon Petchwattana, Kamonchai Cha-aim, Khanet Rodphool, Puttaraksa Sang-on, Tuangphon Lapsarn, Jakkid Sanetuntikul, Supaporn Sophonputtanaphoca, A Circular Economy Use of Durian Rind Waste for Cellulose Extraction and Its Application in Polylactic Acid (PLA) Biodegradable Composites, Trends in Sciences, 22, 8, (2025), 10106-10106 https://doi.org/10.48048/tis.2025.10106
  10. Thivya Selvam, Nor Mas Mira Abd Rahman, Fabrizio Olivito, Zul Ilham, Rahayu Ahmad, Wan Abd Al Qadr Imad Wan-Mohtar, Agricultural Waste-Derived Biopolymers for Sustainable Food Packaging: Challenges and Future Prospects, Polymers, 17, 14, (2025), 1897 https://doi.org/10.3390/polym17141897
  11. Sarocha Charoenvai, Durian Peels Fiber and Recycled HDPE Composites Obtained by Extrusion, Energy Procedia, 56, (2014), 539-546 https://doi.org/10.1016/j.egypro.2014.07.190
  12. Emre Vatansever, Dogan Arslan, Mohammadreza Nofar, Polylactide cellulose-based nanocomposites, International Journal of Biological Macromolecules, 137, (2019), 912-938 https://doi.org/10.1016/j.ijbiomac.2019.06.205
  13. Caroline A. Murphy, Maurice N. Collins, Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing, Polymer Composites, 39, 4, (2018), 1311-1320 https://doi.org/10.1002/pc.24069
  14. Anju Gupta, William Simmons, Gregory T. Schueneman, Donald Hylton, Eric A. Mintz, Rheological and Thermo-Mechanical Properties of Poly(lactic acid)/Lignin-Coated Cellulose Nanocrystal Composites, ACS Sustainable Chemistry & Engineering, 5, 2, (2017), 1711-1720 https://doi.org/10.1021/acssuschemeng.6b02458
  15. Piotr Szatkowski, Jacek Gralewski, Katarzyna Suchorowiec, Karolina Kosowska, Bartosz Mielan, Michał Kisilewicz, Aging Process of Biocomposites with the PLA Matrix Modified with Different Types of Cellulose, Materials, 17, 1, (2024), 22 https://doi.org/10.3390/ma17010022
  16. Lacrimioara Senila, Eniko Kovacs, Maria-Alexandra Resz, Marin Senila, Anca Becze, Cecilia Roman, Life Cycle Assessment (LCA) of Bioplastics Production from Lignocellulosic Waste (Study Case: PLA and PHB), Polymers, 16, 23, (2024), 3330 https://doi.org/10.3390/polym16233330
  17. ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM, West Conshohocken, PA, USA, 2022,
  18. ASTM D2765-16, Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics, ASTM, West Conshohocken, PA, USA, 2024,
  19. ASTM G21-13, Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi, ASTM, West Conshohocken, PA, USA, 2015,
  20. Mohammad Jawaid, Mohamed Thariq, Naheed Saba, Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, 2019, ^ https://doi.org/10.1016/C2016-0-04437-6
  21. Rozanna Dewi, Novi Sylvia, Medyan Riza, Effect of Polylactic Acid (PLA) as Reinforcement for Jackfruit Seed Starch-Based Degradable Plastic, Engineering Proceedings, 84, 1, (2025), 14 https://doi.org/10.3390/engproc2025084014
  22. Jack J. Kenned, K. Sankaranarayanasamy, C. Suresh Kumar, Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review, Polymers and Polymer Composites, 29, 7, (2021), 1011-1038 https://doi.org/10.1177/0967391120942419
  23. Shahab Saedi, Coralia V. Garcia, Jun Tae Kim, Gye Hwa Shin, Physical and chemical modifications of cellulose fibers for food packaging applications, Cellulose, 28, 14, (2021), 8877-8897 https://doi.org/10.1007/s10570-021-04086-0
  24. Shih-Chen Shi, Chia-Feng Hsieh, Dieter Rahmadiawan, Enhancing mechanical properties of polylactic acid through the incorporation of cellulose nanocrystals for engineering plastic applications, Teknomekanik, 7, 1, (2024), 20-28 https://doi.org/10.24036/teknomekanik.v7i1.30072
  25. Ahmed Z. Naser, I. Deiab, Basil M. Darras, Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review, RSC Advances, 11, 28, (2021), 17151-17196 https://doi.org/10.1039/D1RA02390J
  26. Muzamil Hussain, Shahzad Maqsood Khan, Muhammad Shafiq, Naseem Abbas, A review on PLA-based biodegradable materials for biomedical applications, Giant, 18, (2024), 100261 https://doi.org/10.1016/j.giant.2024.100261
  27. Jet Yin Boey, Chee Keong Lee, Guan Seng Tay, Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review, Polymers, 14, 18, (2022), 3737 https://doi.org/10.3390/polym14183737
  28. Nur Amirah Mamat Razali, Risby Mohd Sohaimi, Raja Nor Izawati Raja Othman, Norli Abdullah, Siti Zulaikha Ngah Demon, Latifah Jasmani, Wan Mohd Zain Wan Yunus, Wan Mohd Hanif Wan Ya’acob, Emee Marina Salleh, Mohd Nurazzi Norizan, Norhana Abdul Halim, Comparative Study on Extraction of Cellulose Fiber from Rice Straw Waste from Chemo-Mechanical and Pulping Method, Polymers, 14, 3, (2022), 387 https://doi.org/10.3390/polym14030387
  29. Baiti Rohmawati, Fatin Atikah Nata Sya’idah, Dante Alighiri, Willy Tirza Eden, Synthesis of bioplastic-based renewable cellulose acetate from teak wood (Tectona grandis) biowaste using glycerol-chitosan plasticizer, Oriental Journal of chemistry, 34, 4, (2018), 1810 https://dx.doi.org/10.13005/ojc/3404014
  30. Pedro Florido-Moreno, José J. Benítez, Jaime González-Buesa, José M. Porras-Vázquez, Jesús Hierrezuelo, Montserrat Grifé-Ruiz, Diego Romero, Athanassia Athanassiou, José A. Heredia-Guerrero, Susana Guzmán-Puyol, Plasticized cellulose bioplastics with beeswax for the fabrication of multifunctional, biodegradable active food packaging, Food Hydrocolloids, 162, (2025), 110933 https://doi.org/10.1016/j.foodhyd.2024.110933
  31. Rafidah Md Salim, Jahimin Asik, Mohd Sani Sarjadi, Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark, Wood Science and Technology, 55, 2, (2021), 295-313 https://doi.org/10.1007/s00226-020-01258-2
  32. Oluwatoyin J. Gbadeyan, Linda Z. Linganiso, Nirmala Deenadayalu, Assessment and Optimization of Thermal Stability and Water Absorption of Loading Snail Shell Nanoparticles and Sugarcane Bagasse Cellulose Fibers on Polylactic Acid Bioplastic Films, Polymers, 15, 6, (2023), 1557 https://doi.org/10.3390/polym15061557
  33. Rozanna Dewi, Novi Sylvia, Zulnazri Zulnazri, Herman Fithra, Medyan Riza, Januar Parlaungan Siregar, Tezara Cionita, Deni Fajar Fitriyana, Samsudin Anis, The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM), Polymers, 16, 16, (2024), 2384 https://doi.org/10.3390/polym16162384
  34. E. Marguí, I. Queralt, E. de Almeida, X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends, Chemosphere, 303, (2022), 135006 https://doi.org/10.1016/j.chemosphere.2022.135006
  35. Silma de Sá Barros, Bruno Las-Casas, Bárbara Pereira, Flávio A. de Freitas, Clodoaldo Saron, Development of sustainable cellulose-based materials from oil palm bunch fiber waste from the Amazon region, Polymer International, 74, 11, (2025), 958-964 https://doi.org/10.1002/pi.6790
  36. Juan L. Obeso, Catalina V. Flores, Aldo G. Gutiérrez, Carolina Leyva, Juan Carlos Valdivia-Corona, Leonardo D. Herrera-Zúñiga, José Antonio de los Reyes, Ricardo A. Peralta, Ilich A. Ibarra, Low-toxicity metal–organic frameworks: Sustainable solutions for versatile applications, Bulletin of the Korean Chemical Society, 46, 3, (2025), 265-280 https://doi.org/10.1002/bkcs.70005
  37. Khurram Munir, Jixing Lin, Cuie Wen, Paul F. A. Wright, Yuncang Li, Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications, Acta Biomaterialia, 102, (2020), 493-507 https://doi.org/10.1016/j.actbio.2019.12.001
  38. Chaqmaqchee Faten Adel Ismael, Baker Amera Ghareeb, Salih Najeba Farhad, Comparison of Various Plastics Wastes Using X-ray Fluorescence, American Journal of Materials Synthesis and Processing, 2, 2, (2017), 24-27 https://doi.org/10.11648/j.ajmsp.20170202.12
  39. Muhammed L. Sanyang, Salit M. Sapuan, Mohammad Jawaid, Mohamad R. Ishak, Japar Sahari, Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata) Starch, Polymers, 7, 6, (2015), 1106-1124 https://doi.org/10.3390/polym7061106
  40. Abdulrahman A. B. A. Mohammed, Zaimah Hasan, Abdoulhdi A. Borhana Omran, Abdulhafid M. Elfaghi, M. A. Khattak, R. A. Ilyas, S. M. Sapuan, Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films, Polymers, 15, 1, (2023), 63 https://doi.org/10.3390/polym15010063
  41. Rajesh Gunti, A. V. Ratna Prasad, A. V. S. S. K. S. Gupta, Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass, Polymer Composites, 39, 4, (2018), 1125-1136 https://doi.org/10.1002/pc.24041
  42. Steven Steven, Anna Niska Fauza, Yati Mardiyati, Sigit Puji Santosa, Silvia Mar’atus Shoimah, Facile Preparation of Cellulose Bioplastic from Cladophora sp. Algae via Hydrogel Method, Polymers, 14, 21, (2022), 4699 https://doi.org/10.3390/polym14214699
  43. Muhammad A. S. Anwer, Hani E. Naguib, Alain Celzard, Vanessa Fierro, Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites, Composites Part B: Engineering, 82, (2015), 92-99 https://doi.org/10.1016/j.compositesb.2015.08.028
  44. Babacar Niang, Nicola Schiavone, Haroutioun Askanian, Diène Ndiaye, Vincent Verney, Morphological, Rheological and Mechanical Properties of Pla-Typha Based Biocomposites, Open Journal of Composite Materials, 11, 4, (2021), 111-122 https://doi.org/10.4236/ojcm.2021.114009
  45. Kelly Cristina Coelho de Carvalho Benini, Anne Shayene Campos de Bomfim, Herman Jacobus Cornelis Voorwald, Cellulose-Reinforced Polylactic Acid Composites for Three-Dimensional Printing Using Polyethylene Glycol as an Additive: A Comprehensive Review, Polymers, 15, 19, (2023), 3960 https://doi.org/10.3390/polym15193960
  46. Md Ruhul Amin, Mohammad Asaduzzaman Chowdhury, Md Arefin Kowser, Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch, Heliyon, 5, 8, (2019), e02009 https://doi.org/10.1016/j.heliyon.2019.e02009
  47. Juliana B. Engel, Alan Ambrosi, Isabel C. Tessaro, Development of biodegradable starch-based foams incorporated with grape stalks for food packaging, Carbohydrate Polymers, 225, (2019), 115234 https://doi.org/10.1016/j.carbpol.2019.115234
  48. Emre Gorgun, Alamry Ali, Md Saiful Islam, Biocomposites of Poly(Lactic Acid) and Microcrystalline Cellulose: Influence of the Coupling Agent on Thermomechanical and Absorption Characteristics, ACS Omega, 9, 10, (2024), 11523-11533 https://doi.org/10.1021/acsomega.3c08448
  49. Sateeshkumar Kanakannavar, Jeyaraj Pitchaimani, Relation between water absorption and mechanical properties of flax 3D braided yarn woven fabric PLA bio-degradable composites, Plastics, Rubber and Composites: Macromolecular Engineering, 53, 1, (2024), 3-12 https://doi.org/10.1177/14658011231215986
  50. Ling Zhou, Kai Ke, Ming-Bo Yang, Wei Yang, Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: A review, Composites Communications, 23, (2021), 100548 https://doi.org/10.1016/j.coco.2020.100548
  51. Akmaral Darmenbayeva, Reshmy Rajasekharan, Bakytgul Massalimova, Nessipkhan Bektenov, Raushan Taubayeva, Karlygash Bazarbaeva, Musrepbek Kurmanaliev, Zhazira Mukazhanova, Aisha Nurlybayeva, Kamila Bulekbayeva, Aisulu Kabylbekova, Aisulu Ungarbayeva, Cellulose-Based Sorbents: A Comprehensive Review of Current Advances in Water Remediation and Future Prospects, Molecules, 29, 24, (2024), 5969 https://doi.org/10.3390/molecules29245969
  52. Mustafa Zaleha, Razali Anira Shahidah, Rajendran Thavinnesh Kumar, Siti Hajar Sheikh Md Fadzullah, Malingam Sivakumar Dhar, Rahim Toibah Abd, Ratanawilai Thanate, Moisture Absorption and Thermal Properties of Unidirectional Pineapple Leaf Fibre/Polylactic Acid Composites under Hygrothermal Ageing Conditions, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 96, 2, (2022), 65-73 https://doi.org/10.37934/arfmts.96.2.6573
  53. Chensong Dong, Ian J. Davies, Celso Carlino Maria Fornari Junior, Biodegradability and Water Absorption of Macadamia Nutshell Powder-Reinforced Poly(lactic Acid) Biocomposites, Sustainability, 16, 8, (2024), 3139 https://doi.org/10.3390/su16083139
  54. Patpen Penjumras, Russly Abdul Rahman, Rosnita A. Talib, Khalina Abdan, Mechanical Properties and Water Absorption Behaviour of Durian Rind Cellulose Reinforced Poly(lactic acid) Biocomposites, International Journal on Advanced Science, Engineering and Information Technology, 5, 5, (2015), 343-349
  55. Ružica Brunšek, Dragana Kopitar, Ivana Schwarz, Paula Marasović, Biodegradation Properties of Cellulose Fibers and PLA Biopolymer, Polymers, 15, 17, (2023), 3532 https://doi.org/10.3390/polym15173532
  56. Uwei Kong, Nurul Fazita Mohammad Rawi, Guan Seng Tay, The Potential Applications of Reinforced Bioplastics in Various Industries: A Review, Polymers, 15, 10, (2023), 2399 https://doi.org/10.3390/polym15102399
  57. Christine Lors, Pauline Leleux, Chung Hae Park, State of the art on biodegradability of bio-based plastics containing polylactic acid, Frontiers in Materials, 11, (2025), https://doi.org/10.3389/fmats.2024.1476484
  58. Wouter Post, Lambertus J. Kuijpers, Martin Zijlstra, Maarten van der Zee, Karin Molenveld, Effect of Mineral Fillers on the Mechanical Properties of Commercially Available Biodegradable Polymers, Polymers, 13, 3, (2021), 394 https://doi.org/10.3390/polym13030394

Last update:

No citation recorded.

Last update: 2026-02-07 10:19:33

No citation recorded.