skip to main content

Comparative Study on the Effect of Polyvinylpyrrolidone (PVP K30) Concentration on the Structure and Performance of Chitosan Membranes for Phosphate Ion Filtration

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Received: 22 Oct 2025; Revised: 3 Dec 2025; Accepted: 4 Dec 2025; Published: 8 Dec 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

The increasing concentration of phosphate in industrial and agricultural waste is a major cause of eutrophication, which threatens the balance of aquatic ecosystems. Membrane technology offers an effective approach for phosphate ion removal through the combined mechanisms of filtration and adsorption. In this study, chitosan membranes were modified with polyvinylpyrrolidone K30 (PVP K30) at four different concentrations using the phase inversion method. Increasing the PVP K30 content in the chitosan membrane enhanced water absorption, porosity, and hydrophilicity. These improvements significantly influenced phosphate ion filtration performance, resulting in a flux increase of 33–48% and an enhancement in phosphate ion rejection of 32–39% compared to the unmodified chitosan membrane. Furthermore, phosphate ion adsorption on the membrane surface was observed, which is likely attributed to the presence of surface functional groups with different charges and to membrane pore sizes comparable to the size of phosphate ions.

Fulltext View|Download
Keywords: chitosan; PVP K30; porosity; filtration; phosphate ion adsorption

Article Metrics:

  1. Abdelazeem S. Eltaweil, Eman M. Abd El-Monaem, Hala M. Elshishini, Hisham G. El-Aqapa, Mohamed Hosny, Ahmed M. Abdelfatah, Maha S. Ahmed, Eman Nasr Hammad, Gehan M. El-Subruiti, Manal Fawzy, Ahmed M. Omer, Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review, RSC Advances, 12, 13, (2022), 8228-8248 http://doi.org/10.1039/D1RA09193J
  2. Boaiqi Zhang, Nan Chen, Chuanping Feng, Zhenya Zhang, Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: Characteristic and mechanism, Chemical Engineering Journal, 353, (2018), 361-372 https://doi.org/10.1016/j.cej.2018.07.092
  3. Perumal Karthikeyan, Hyder Ali Thagira Banu, Sankaran Meenakshi, Removal of phosphate and nitrate ions from aqueous solution using La3+ incorporated chitosan biopolymeric matrix membrane, International Journal of Biological Macromolecules, 124, (2019), 492-504 https://doi.org/10.1016/j.ijbiomac.2018.11.127
  4. Yumeng Zhao, Lin Guo, Wei Shen, Qingda An, Zuoyi Xiao, Haisong Wang, Weijie Cai, Shangru Zhai, Zhongcheng Li, Function integrated chitosan-based beads with throughout sorption sites and inherent diffusion network for efficient phosphate removal, Carbohydrate Polymers, 230, (2020), 115639 https://doi.org/10.1016/j.carbpol.2019.115639
  5. Retno Ariadi Lusiana, Khabibi Khabibi, Rahmad Nuryanto, Muhammad Ridho Shofwan Al Aziz, Development and Characterization of a Chitosan and Polyvinyl Alcohol (CS/PVP)-Based Slow-Release Urea Fertilizer Membrane, Jurnal Kimia Sains dan Aplikasi, 27, 10, (2024), 470-476 http://doi.org/10.14710/jksa.27.10.470-476
  6. Jianlong Wang, Shuting Zhuang, Chitosan-based materials: Preparation, modification and application, Journal of Cleaner Production, 355, (2022), 131825 https://doi.org/10.1016/j.jclepro.2022.131825
  7. R. Poonguzhali, S. Khaleel Basha, V. Sugantha Kumari, Synthesis and characterization of chitosan/poly (vinylpyrrolidone) biocomposite for biomedical application, Polymer Bulletin, 74, 6, (2017), 2185-2201 http://doi.org/10.1007/s00289-016-1831-z
  8. R. H. Sizílio, J. G. Galvão, G. G. G. Trindade, L. T. S. Pina, L. N. Andrade, J. K. M. C. Gonsalves, A. A. M. Lira, M. V. Chaud, T. F. R. Alves, M. L. P. M. Arguelho, R. S. Nunes, Chitosan/pvp-based mucoadhesive membranes as a promising delivery system of betamethasone-17-valerate for aphthous stomatitis, Carbohydrate Polymers, 190, (2018), 339-345 https://doi.org/10.1016/j.carbpol.2018.02.079
  9. Katarzyna Lewandowska, Miscibility and interactions in chitosan acetate/poly(N-vinylpyrrolidone) blends, Thermochimica Acta, 517, 1, (2011), 90-97 https://doi.org/10.1016/j.tca.2011.01.036
  10. Hyder Ali Thagira Banu, Perumal Karthikeyan, Sivakumar Vigneshwaran, Sankaran Meenakshi, Adsorptive performance of lanthanum encapsulated biopolymer chitosan-kaolin clay hybrid composite for the recovery of nitrate and phosphate from water, International Journal of Biological Macromolecules, 154, (2020), 188-197 https://doi.org/10.1016/j.ijbiomac.2020.03.074
  11. Christos Christou, Katerina Philippou, Theodora Krasia-Christoforou, Ioannis Pashalidis, Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers, Carbohydrate Polymers, 219, (2019), 298-305 https://doi.org/10.1016/j.carbpol.2019.05.041
  12. Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, D. Y. Shen, Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires, The Journal of Physical Chemistry B, 108, 34, (2004), 12877-12881 http://doi.org/10.1021/jp037116c
  13. Ritesh Kumar, Indrani Mishra, Gulshan Kumar, Synthesis and Evaluation of Mechanical Property of Chitosan/PVP Blend Through Nanoindentation-A Nanoscale Study, Journal of Polymers and the Environment, 29, 11, (2021), 3770-3778 https://doi.org/10.1007/s10924-021-02143-0
  14. Łukasz Wujcicki, Joanna Kluczka, Recovery of Phosphate(V) Ions from Water and Wastewater Using Chitosan-Based Sorbents Modified—A Literature Review, International Journal of Molecular Sciences, 24, 15, (2023), 12060 https://doi.org/10.3390/ijms241512060
  15. Umi Fathanah, Mirna Rahmah Lubis, Zuhra Mahyuddin, Syawaliah Muchtar, Mukramah Yusuf, Cut Meurah Rosnelly, Sri Mulyati, Rina Hazliani, Devi Rahmanda, Suraiya Kamaruzzaman, Meuthia Busthan, Sintesis, Karakterisasi dan Kinerja Membran Hidrofobik Menggunakan Polyvinyl Pyrrolidone (PVP) sebagai Aditif, ALCHEMY Jurnal Penelitian Kimia, 17, 2, (2021), 140-150 http://doi.org/10.20961/alchemy.17.2.48435.140-150
  16. C. S. Ong, W. J. Lau, P. S. Goh, B. C. Ng, A. F. Ismail, Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system, Desalination and Water Treatment, 53, 5, (2015), 1213-1223 https://doi.org/10.1080/19443994.2013.855679
  17. A. K. Wardani, D. Ariono, S. Subagjo, I. G. Wenten, Fouling tendency of PDA/PVP surface modified PP membrane, Surfaces and Interfaces, 19, (2020), 100464 https://doi.org/10.1016/j.surfin.2020.100464
  18. David Aili, Mikkel Rykær Kraglund, Joe Tavacoli, Christodoulos Chatzichristodoulou, Jens Oluf Jensen, Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis, Journal of Membrane Science, 598, (2020), 117674 https://doi.org/10.1016/j.memsci.2019.117674
  19. Xiaorui Ren, Huanhuan Li, Ke Liu, Hongyi Lu, Jingshuai Yang, Ronghuan He, Preparation and Investigation of Reinforced PVP Blend Membranes for High Temperature Polymer Electrolyte Membranes, Fibers and Polymers, 19, 12, (2018), 2449-2457 http://doi.org/10.1007/s12221-018-8361-2
  20. M. O. Mavukkandy, M. R. Bilad, J. Kujawa, S. Al-Gharabli, H. A. Arafat, On the effect of fumed silica particles on the structure, properties and application of PVDF membranes, Separation and Purification Technology, 187, (2017), 365-373 https://doi.org/10.1016/j.seppur.2017.06.077

Last update:

No citation recorded.

Last update: 2025-12-15 17:29:13

No citation recorded.