skip to main content

Biofilm Formation and Bio Corrosion of Carbon Steel in Diesel-Biodiesel Storage Tank

*Aida Nur Ramadhani  -  Universitas Sebelas Maret, Indonesia
Ardiyan Harimawan  -  Institut Teknologi Bandung, Indonesia
Hary Devianto  -  Institut Teknologi Bandung, Indonesia

Citation Format:
Abstract

Biodiesel is potential to blend with petroleum diesel as an alternative blended fuel. Biodiesel is usually stored in carbon steel storage tank which easily corroded by microorganisms. Microorganisms can use blended fuels as carbon source and water from biodiesel which is hygroscopic for growth and metabolism. Thus, degradation of fuel may occur and lead to biocorrosion by microorganisms such as Bacillus megaterium. This research was conducted to determine the effect of biodiesel concentration of blended fuel on biofilm formation and biocorrosion by Bacillus megaterium. The experiments were carried out by immersing carbon steel specimens in immersion medium for 21 days with variation of biodiesel concentration (B0, B20, B30, and B100). Biofilms that form on the metal surface cause areas with non-uniform oxygen concentrations and form anodic/cathodic conditions, raised to potential differences and biocorrosion occurred. The average corrosion rates were 0,035 ± 0,03; 0,533 ± 0,33; 0,642 ± 0,28; 0,109 ± 0,04 mm/year achieved by B0, B20, B30 and B100 respectively. These rates increased when compared to the control medium. Microorganism activity also caused damage to the metal surface by forming pitting corrosion on B30 and B100.

Fulltext View|Download
Keywords: bacillus megaterium, biocorrosion, biodiesel, biofilm, blended fuel
Funding: Indonesia Endowment Fund for Education LPDP Scholarship under contract Institut Teknologi Bandung

Article Metrics:

  1. Abbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. 2012. Current biodiesel production technologies: A comparative review. Energy Conversion and Management, 63, 138–148
  2. Aktas, D. F., Sorrell, K. R., Duncan, K. E., Wawrik, B., Callaghan, A. V, & Su, J. M. 2017. International Biodeterioration & Biodegradation Anaerobic hydrocarbon biodegradation and biocorrosion of carbon steel in marine environments : The impact of different ultra low sulfur diesels and bioaugmentation. International Biodeterioration & Biodegradation, 118, 45–56
  3. Alasvand Zarasvand, K., & Rai, V. R. 2014. Microorganisms: Induction and inhibition of corrosion in metals. International Biodeterioration and Biodegradation, 87, 66–74
  4. Arbab, M. I., Masjuki, H. H., Varman, M., Kalam, M. A., Imtenan, S., & Sajjad, H. 2013. Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel. Renewable and Sustainable Energy Reviews, 22, 133–147
  5. Beech, I. B., & Sunner, J. 2004. Biocorrosion : towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15, 181–186
  6. Das, N., & Chandran, P. 2011. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnology Research International, 2011, 1–13
  7. Fazal, M. A., Haseeb, A. S. M. A., & Masjuki, H. H. 2010. Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Processing Technology, 91(10), 1308–1315
  8. Fregolente, P. B. L., Fregolente, L. V., & Wolf MacIel, M. R. 2012. Water Content in Biodiesel, Diesel, and Biodiesel-Diesel Blends. In Journal of Chemical and Engineering Data 57(6), 1817–1821
  9. Groysman, A. 2014. Corrosion in Systems for Storage and Transportation of Petroleum Products and Biofuels. Springer Dordrecht Heidelberg New York London
  10. He, B. B., Thompson, J. C., Routt, D. W., & Gerpen, J. H. Van. 2007. Moisture Absorption in Biodisel and Its Petro-Diesel Blends. American Society of Agricultural and Biological Engineers, 23(2), 71–76
  11. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. 2012. Review of biodiesel composition , properties , and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169
  12. Jakeria, M. R., Fazal, M. A., & Haseeb, A. S. M. A. 2014. Influence of different factors on the stability of biodiesel: A review. Renewable and Sustainable Energy Reviews, 30, 154–163
  13. Kurnia, J. C., Jangam, S. V., Akhtar, S., Sasmito, A. P., & Mujumdar, A. S. 2016. Advances in biofuel production from oil palm and palm oil processing wastes: A review. Biofuel Research Journal, 3(1), 332–346
  14. Kuss, V. V., Kuss, A. V., Da Rosa, R. G., Aranda, D. A. G., & Cruz, Y. R. 2015. Potential of biodiesel production from palm oil at Brazilian Amazon. Renewable and Sustainable Energy Reviews, 50, 1013–1020
  15. Lapuerta, M., Rodríguez-Fernández, J., Ramos, A., & Álvarez, B. 2012. Effect of the test temperature and anti-oxidant addition on the oxidation stability of commercial biodiesel fuels. Fuel, 93, 391–396
  16. Lewandowski, Z., & Beyenal, H. 2008. Mechanisms of Microbially Influenced Corrosion. Springer Series on Biofilms, 35–64
  17. Liengen, T., Féron, D., Basséguy, R., & Beech, I. 2014. Understanding Biocorrosion: Fundamentals and Applications. In Understanding Biocorrosion: Fundamentals and Applications
  18. Lu, X., Al-Qadiri, H. M., Lin, M., & Rasco, B. A. 2011. Application of Mid-infrared and Raman Spectroscopy to the Study of Bacteria. Food and Bioprocess Technology, 4(6), 919–935
  19. Lutz, G., Chavarría, M., Arias, M. L., & Mata-Segreda, J. F. 2006. Microbial degradation of palm (Elaeis guineensis) biodiesel. Revista de Biologia Tropical, 54(1), 59–63
  20. Maruthamuthu, S., Kumar, B. D., Ramachandran, S., Anandkumar, B., Palanichamy, S., Chandrasekaran, M., Subramanian, P., & Palaniswamy, N. 2011. Microbial corrosion in petroleum product transporting pipelines. Industrial and Engineering Chemistry Research, 50(13), 8006–8015
  21. Monyem, A., & Gerpen, J. H. Van. 2001. The e ect of biodiesel oxidation on engine performance and emissions. Biomass and Bioenergy, 20, 317–325
  22. Oliveira, M. B., Varanda, F. R., Marrucho, I. M., Queimada, A. J., & Coutinho, J. A. P. 2008. Prediction of Water Solubility in Biodiesel with the CPA Equation of State Prediction of Water Solubility in Biodiesel with the CPA Equation of State. Industrial & Engineering Chemistry Research, 47(1), 4278–4285
  23. Owsianiak, M., Chrzanowski, Ł., Szulc, A., Staniewski, J., Olszanowski, A., Olejnik-Schmidt, A. K., & Heipieper, H. J. 2009. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresource Technology, 100(3), 1497–1500
  24. Passman, F. J. 2013. Microbial contamination and its control in fuels and fuel systems since 1980 - a review. International Biodeterioration and Biodegradation, 81(3), 88–104
  25. Pusparizkita, Y. M., Setiadi, T., & Harimawan, A. (2018). Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens. 01008, 1–7
  26. Rajasekar, A., Maruthamuthu, S., Muthukumar, N., Mohanan, S., Subramanian, P., & Palaniswamy, N. 2005. Bacterial degradation of naphtha and its influence on corrosion. Corrosion Science, 47(1), 257–271
  27. Rajasekar, A., Ponmariappan, S., Maruthamuthu, S., & Palaniswamy, N. 2007. Bacterial degradation and corrosion of naphtha in transporting pipeline. Current Microbiology, 55(5), 374–381
  28. Schmitt, J., & Flemming, H. 1994. FTlR-spectroscopy in microbial and material analysis. International Biodeterioration & Biodegradation, 41, 1–11
  29. Sousa, D. Z., Smidt, H., Alves, M. M., & Stams, A. J. M. 2009. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiology Ecology, 68(3), 257–272
  30. Wu, S., Yassine, M. H., Suidan, M. T., & Venosa, A. D. 2016. Anaerobic biodegradation of soybean biodiesel and diesel blends under sulfate-reducing conditions. Chemosphere, 161, 382–389
  31. Xu, D., & Gu, T. 2014. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. International Biodeterioration and Biodegradation, 91, 74–81

Last update:

  1. Microbiologically influenced corrosion of the ST-37 carbon steel tank by Bacillus licheniformis present in biodiesel blends

    Yustina M. Pusparizkita, Christian Aslan, Wolfgang W. Schmahl, Hary Devianto, Ardiyan Harimawan, Tjandra Setiadi, Yan Jer Ng, Athanasius P. Bayuseno, Pau Loke Show. Biomass and Bioenergy, 168 , 2023. doi: 10.1016/j.biombioe.2022.106653
  2. Evaluation of synthetic and bio-based additives on the oxidation stability of palm biodiesel: Parametric, kinetics and thermodynamics studies

    Chi Hou Lau, Harrison Lik Nang Lau, Hoon Kiat Ng, Suchithra Thangalazhy-Gopakumar, Lai Yee Lee, Suyin Gan. Sustainable Energy Technologies and Assessments, 64 , 2024. doi: 10.1016/j.seta.2024.103738
  3. Microbiologically influenced corrosion in B35 carbon steel storage tank: The influence of diesel blend sludge mixed culture in the oil-water interphase

    Christian Aslan, Hary Devianto, Vita Wonoputri, Nadia Ijkri Aulia, Yustina Metanoia Pusparizkita, Athanasius Priharyoto Bayuseno, Ardiyan Harimawan. Case Studies in Chemical and Environmental Engineering, 10 , 2024. doi: 10.1016/j.cscee.2024.101022
  4. Microbiologically Influenced Corrosion in B35 Carbon Steel Storage Tank: The Influence of Diesel Blend Mixed Culture in the Oil-Water Interphase

    Christian Aslan, Hary Devianto, Vita Wonoputri, Nadia Ijkri Aulia, Yustina Metanoia Pusparizkita, Athanasius Priharyoto Bayuseno, Ardiyan Harimawan. Case Studies in Chemical and Environmental Engineering, 2024. doi: 10.1016/j.cscee.2024.101022

Last update: 2024-11-26 18:59:52

No citation recorded.