skip to main content

Pollution Load Analysis of Wonokromo River with Program System Dynamics (STELLA)

*Filial Dhiya Thifalina orcid scopus publons  -  Universitas Diponegoro, Indonesia
Badrus Zaman  -  Universitas Diponegoro, Indonesia
Anik Sarminingsih  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract
Population growth, the increase in the industrial sector and the presence of waste from activities that haven’t been treated properly can make a water river being contaimined high pollutants. The pollutant parameters identified is Total Suspended Solid (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Dissolved Oxygen (DO) and E.Coli. One of the polluted rivers is Wonokromo River which is located in Surabaya City, according from monitoring results Balai Besar Wilayah Sungai (BBWS) Brantas in 2021 the pollutant value in river with TSS is 484 mg/L, BOD is 15.96 mg/L, COD 23.91 mg/L, DO 3.67 mg/L, and E.coli 4.283 MPN/100 ml from the monitoring data included polluted category. Depectin model of water river conditions using the STELLA program. The results indicate that the water quality of the Wonokromo River is polluted with the parameters TSS, BOD and E. Coli, determination refers to Goverment Regulations number 22 in 2021 about “Implementation of Environmental Protection and Management” in clasification II for raw water. So Wonokromo River is not suitable as a source of raw water in that year and a policy scenario is needed to reduce water river pollution.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Results
Pollution Load Analysis Of Wonokromo River With Program System Dynamics (STELLA)
Subject Water River Quality, Wonokromo River, Dynamic System, STELLA
Type Research Results
  Download (1MB)    Indexing metadata
Keywords: River water quality; wonokromo River; dynamic system; STELLA

Article Metrics:

  1. Alihar, F. 2018. Penduduk akses air bersih di kota semarang. Jurnal Kependudukan Indonesia 13(1), 67-76
  2. Arisandi, P 2014. Air, dua juta orang surabaya sulit mendapatkannya. Ecological Observation and Wetlands Conservation (Ecoton). Gresik
  3. Chang, Tsai, Chen, Coynel & Vachaud. 2015. Modelling water quality in an urban river using hydrological factors. Journal of Enviromental Management 151 (Supplement C) 87-96
  4. Chapra, S. C. 1997. Surface water-quality modelling. McGraw-Hill Companies, Inc, Singapore
  5. Deaton, M. L. & Winebrake, J. J. 2012. Dynamic modeling of environmental systems. Springer Science & Business Media
  6. Effendi, H. 2003. Telaah kualitas air bagi pengelolaan sumber daya dan lingkungan. Kasius Publisher. Yogyakarta
  7. Gilad, B. 2003. Early warning: using competitive intelligence to anticipate market shifts, control risk, and create powerful strategies. American Management Association, New York. USA
  8. Guneralp, B. and Barlas, Y. 2003. Dynamic modelling of a shallow freshwater lake for ecological and economic sustainability. Ecological Modelling 167, 115 – 138
  9. Karnaningroem, N. and Putri, F. A. 2019. prediction of water pollution in kali surabaya river segment karang pilang - ngagel using STELLA model. Institut Teknologi Sepuluh Nopember, Surabaya
  10. Karnaningroem, N. 2018. dissolved oxygen dynamic system model for the determination of the assimilating capacity at brantas river malang city. Institut Teknologi Sepuluh Nopember, Surabaya
  11. Kementrian Lingkungan Hidup. 2003. Keputusan menteri lingkungan hidup nomor 115 tahun 2003 penentuan status mutu air dengan metode indeks pencemaran. Jakarta
  12. Kementerian Lingkungan Hidup. 2010. Peraturan Menteri Negara Lingkungan Hidup Nomor 01 Tahun 2010 Tata Laksana Pengendalian Pencemaran Air. Kementerian Negara Lingkungan Hidup. Jakarta
  13. Kementerian Lingkungan Hidup. 2011. Indeks kualitas lingkungan hidup indonesia 2010. Kementerian Negara Lingkungan Hidup. Jakarta
  14. Khan, S. Yufeng, L. & Ahmad, A. 2009. Analysing complex behaviour of hydrological systems through a system dynamics approach. Environmental Modelling & Software 24 (12)
  15. Kunc, M. 2016. System dynamics: a behavioral modeling method. Proceedings of the 2016 Winter Simulation Conference 53 – 64
  16. Kurniawan, O. and Ngatilah, Y. 2017. Kebijakan perbaikan kualitas air sungai pegirikan dengan metode sistem dinamik. Surabaya
  17. Mitsch, W., and Gosselink, J. 1993. Wetlands in water quality prevention, identification and management of disfuse pollution. Van Nostrand Reinhold, New York
  18. Muhammadi, E. A. 2001. Analisis Sistem Dinamis. Jakarta
  19. Novitasari, R. 2010. Mampukah kebijakan pergulaan nasional meningkatkan perolehan pendapatan petani tebu : sebuah penghampiran dinamika sistem. Institut Teknologi Sepuluh Nopember, Surabaya
  20. Pavita, K. D., Widiatmono, B. R., and Dewi, L. 2017. Studi penentuan daya tampung beban pencemaran sungai akibat buangan limbah domestik (studi kasus kali Surabaya – Kecamatan Wonokromo). Brawijaya University, Malang
  21. Pemerintah Daerah Provinsi Jawa Timur. 2008. Peraturan Daerah Jawa Timur Nomor 2 Tahun 2008 Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air Di Provinsi Jawa Timur. Jawa Timur, Indonesia
  22. Pemerintah Republik Indonesia. 2001. Peraturan pemerintah republik indonesia nomor 82 tahun 2001 pengelolaan kualitas air dan pengendalian pencemaran air. Indonesia
  23. Qin, X. S., Huang, G. H., Zeng, G. M., Chakma, A., & Huang, Y. F., 2007. An interval – parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of Operational Research 180(3), 1331-1357
  24. Suwari. 2010. Model pengendalian pencemaran air pada wilayah Kali Surabaya. Bogor Agricultural University, Bogor
  25. Salim, H. 2002. Beban pencemaran limbah domestik dan pertanian di DAS Citarum Hulu. Journal of Environmental Technology 2(3): 107-111
  26. Standar Nasional Indonesia – SNI. 2008. Air dan Air Limbah. SNI 6989.57:2008 Bagian 57. Indonesia
  27. Yudo, S and Said, N. I. 2019. Kondisi Kualitas Air Sungai Surabaya. South Tangerang
  28. Xiang, N., Sha, J., Yan, J., & Xu, F. 2013 dynamic modeling and simulation of water environment management with a focus on water recycling. Water 6(1), 17-31

Last update:

No citation recorded.

Last update: 2024-11-22 11:53:13

No citation recorded.