skip to main content

Effect of Blue Light Color on Zn (II) and Cu (II) Metal Biosorption Using Tetraselmis chuii Microalgae

*Tanti Utami Utami Dewi  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Adhi Setiawan  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Muhammad Hanif Dzulfikar  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Desita Ramadona Syah Putri  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Karina Larasati Gunawan  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Haekal Irfan Titan Prianto  -  Politeknik Perkapalan Negeri Surabaya, Indonesia
Rahmad Firnandi  -  Politeknik Perkapalan Negeri Surabaya, Indonesia

Citation Format:
Abstract

Direct release of inorganic compounds Cu (II) and Zn (II) into water bodies can disrupt ecosystems. Using microalgae biosorbent Tetraselmis chuii (T. chuii) is a promising approach for removing these metals from wastewater. This study investigated the effect of blue light on the absorption of Cu (II) and Zn (II) by analyzing the contact time and initial concentration. Statistical analysis (MANOVA) revealed differences in the biosorption process due to the contact time and Cu (II) concentration (P <0.05). The results showed that the most effective Cu (II) removal occurred with a 60-minute contact time at a concentration of 5 mg/L, achieving a 67.07% removal rate. Zn (II) removal was also efficient under blue light conditions with a 60-minute contact time at the same concentration, yielding a 56.23% removal rate. Additionally, this process led to a substantial reduction in microalgae T. chuii cell density, by 76% for Cu (II) and 89.2% for Zn(II). Characterization analyses using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy confirmed the presence of functional groups in T. chuii microalgae, which are crucial for the biosorption process. This study underscores the potential of microalgae as effective biosorbents for mitigating inorganic compound pollution in wastewater.

 

Fulltext View|Download

Article Metrics:

  1. Ajayan, K. V., Selvaraju, M., Unnikannan, P., & Sruthi, P. (2015). Phycoremediation of tannery wastewater using microalgae Scenedesmus species. International journal of phytoremediation, 17(10), 907-916
  2. Azizi, S., Kamika, I., & Tekere, M. (2016). Evaluation of inorganic compounds removal from wastewater in a modified packed bed biofilm reactor. PloS one, 11(5), e0155462
  3. Badan Standarisasi Nasional. (2004). Air dan air limbah - bagian 7: cara uji seng (Zn) dengan spektrofotometri serapan atom (SSA)-Nyala
  4. Bahtiyar, Ahmad Rais. (2017). Laju Pertumbuhan dan kadar klorofil pada mikroalga tetraselmis chuii dengan media hiposalin dan hipersalin. Skripsi. Program Studi Budidaya Perairan. Fakultas Sains dan Teknologi. Universitas Islam Nahdlatul Ulama: Jepara
  5. Bankole, M. T., Abdulkareem, A. S., Mohammed, I. A., Ochigbo, S. S., Tijani, J. O., Abubakre, O. K., & Roos, W. D. (2019). Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Scientific Reports, 9(1), 1–19. https://doi.org/10.1038/s41598-018-37899-4
  6. Cameron, H., Mata, M. T., & Riquelme, C. (2018). The effect of inorganic compounds on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation. PeerJ, 6, e5295
  7. Chakti, AS, Eva, SS, Rani, DP, (2019). Analysis of mercury and hydroquinone in circulating whitening creams In Jayapura. JST (Journal of Science and Technology), 8(1)
  8. Dammak, M., Hlima, H. B., Tounsi, L., Michaud, P., Fendri, I., & Abdelkafi, S. (2022). Effect of inorganic compounds mixture on the growth and physiology of Tetraselmis sp.: Applications to lipid production and bioremediation. Bioresource Technology, 360, 127584
  9. Dhokpande, S. R., & Kaware, J. P. (2013). Biological methods for inorganic compounds removal-A review. International Journal of Engineering Science and Innovative Technology, 2(5), 304-309
  10. Forero-Mendieta, J. R., Varón-Calderón, J. D., Varela-Martínez, D. A., RiañoHerrera, D. A., Acosta-Velásquez, R. D., & Benavides-Piracón, J. A. (2022). Validation of an Analytical Method for the Determination of Manganese and Lead in Human Hair and Nails Using Graphite Furnace Atomic Absorption Spectrometry. Separations 2022, 9(7), 158
  11. Giripunje, M. D., Fulke, A. B., & Meshram, P. U. (2015). Remediation techniques for heavy‐metals contamination in lakes: a mini‐review. CLEAN–Soil, Air, Water, 43(9), 1350-1354
  12. Goswami, R. K., Agrawal, K., Shah, M. P., & Verma, P. (2022). Bioremediation of inorganic compounds from wastewater: a current perspective on microalgae‐based future. Letters in Applied Microbiology, 75(4), 701-717
  13. Gunatilake, S. K. (2015). Methods of removing inorganic compounds from industrial wastewater. Methods, 1(1), 14
  14. Gunawan, Rahmat., Kahar, Abdul. (2019). Effect of recirculation flow rate on seeding and acclimatization of effluent waste palm oil mills (lcpks) in anaerobic bioreactors. Proceedings of the V National Seminar on Technology
  15. Haleem, Azhar M., Abdulgafoor, Enas A. (2010). The biosorption of Cr (VI) from aqueous solution using date palm fibers (Leef). Al-Khwarizmi Engineering Journal. 6(4). 31-36
  16. Hayati, A. N. (2022). Studi efektivitas variasi gelombang cahaya pada pada mikroalga chlorella vulgaris dengan metode biosorpsi sebagai alternatif pengolahan limbah cair artifisial logam berat Cu (II). Tugas Akhir. Program Studi Teknik Pengolahan Limbah. Politeknik Perkapalan Negeri Surabaya
  17. Ilyas, M., Ahmad, W., Khan, H., Yousaf, S., Yasir, M., & Khan, A. (2019). Environmental and health impacts of industrial wastewater effluents in Pakistan: a review. Reviews on Environmental Health, 0(0). doi: 10.1515/reveh-2018-007
  18. Kumar, N., Hans, S., Verma, R., & Srivastava, A. (2020). Acclimatization of microalgae Arthrospira platensis for treatment of inorganic compounds in the Yamuna River. Water Science and Engineering, 13(3), 214-222
  19. Kurniawan, Jonathan Ivander., Aunurohim. (2014). Biosorption of Zn2+ Metal and Pb2+ by the microalgae Chlorella sp. Pomits Journal of Science and Arts, 3(1), 2337-3520
  20. Pratama, S. A. dan Rita I. P. (2021). Pengaruh penerapan standar operasional prosedur dan kompetensi terhadap produktivitas kerja karyawan divisi ekspor PT. Dua Kuda Indonesia. Jurnal Ilmiah M-Progres, Vol. 11(1):38- 47
  21. Raza’i, T. S., Amrifo, V., Pardi, H., Putra, I. P., Febrianto, T., & Ilhamdy, A. F. (2021). Accumulation of essential (copper, iron, zinc) and non-essential (lead, cadmium) inorganic compounds in Caulerpa racemosa, sea water, and marine sediments of Bintan Island, Indonesia. F1000Research, 10
  22. Razman, K. K., Hanafiah, M. M., Ramli, A. N., & Harun, S. N. (2023, May). Industrial wastewater treatment methods employed in Southeast Asian countries. In IOP Conference Series: Earth and Environmental Science (Vol. 1167, No. 1, p. 012020). IOP Publishing
  23. Ruyters, G. (1984). Effects of Blue Light on Enzymes. In: Senger, H. (eds) Blue light effects in biological systems. proceedings in life sciences. Springer, Berlin, Heidelberg
  24. Subramanian, K. S., Janavi, G. J., Marimuthu, S., Kannan, M., Raja, K., Haripriya, S., Jeya Sundara Sharmila, D., & Moorthy, P. (2018). scanning electron microscopy: principle, components and applications. textbook on fundamentals and applications of nanotechnology, 91–90
  25. Sutrisno., Wulandari, Dewi. (2018). Multivariate analysis of variance (MANOVA) to enrich the results educational research. Axiom. 9(1). 37-53
  26. Tripathi S., Neha A., Payal G., Parul A. P. (2019). Microalgae: an emerging source for mitigation of inorganic compounds and their potential implications for biodiesel production. Advanced Biofules, Applications, Technologies, and Environmental Sustainability: 97 – 128
  27. Vania, V. (2016). Studi penyisihan logam seng (Zn2+) pada limbah elektroplating menggunakan membran kitosan dan zeolit. Institut Teknologi Sepuluh Nopember Surabaya, 1–101
  28. Wanta, Kevin Cleary., Catherine., Miryanti, Arry., Kristijarti, Anastasia Prima. (2023). Biosorption of Cu (II) ions using living Microalgae Chlorella sp: effects of microalgae concentration, salinity, and light color. International Journal of Technology. 14(1). 195-205
  29. Yudo, S., & Said, N. I. (2005). Pengolahan air limbah industri kecil pelapisan logam. Jurnal Air Indonesia, 1(1)
  30. Zabochnicka-Świątek, M., & Krzywonos, M. (2014). Potentials of biosorption and bioaccumulation processes for inorganic compounds removal. Polish Journal of Environmental Studies, 23(2)
  31. Zainuddin, M., Noor H., Luky M., Nurcahyo K., Budi A. 2017. Pengaruh media hiposalin dan hipersalin terhadap respon pertumbuhan dan biopigmen Dunaliella salina. Jurnal Enggano, Vol. 2(1): 46 – 57

Last update:

No citation recorded.

Last update: 2024-12-05 02:03:58

No citation recorded.