skip to main content

Analysis of CO (Carbon Monoxide) on Transportation Along the Eastern Crossroad of Jambi

Amsori M.Das  -  Universitas Batanghari, Indonesia
*Endi Adriansyah  -  Universitas Batanghari, Indonesia
Hariestya Viareco  -  Universitas Jambi, Indonesia
Rifqi Sufra  -  Institut Teknologi Sumatera, Indonesia
Asih Suzana  -  Universitas Batanghari, Indonesia
Peppy Herawati  -  Universitas Batanghari, Indonesia

Citation Format:
Abstract

The Eastern Crossroad is one of the national roads that connect the city of Jambi with other cities, districts, and provinces, resulting in relatively heavy traffic and frequent congestion on this road. This has led to the concentration of carbon monoxide (CO), which can result in a decline in ambient air quality. The research used a quantitative descriptive approach aimed at depicting the ambient air quality of CO on Mendalo Darat Road, which is part of Eastern Crossroad. The research revealed the highest vehicle density of 17,954 units in the morning on Tuesday, with the highest emission rate of 114,290 µg/m.s, and the lowest density on Sunday morning with 6,568 units and an emission rate of 44,207 µg/m.s. The highest accumulation of CO emission levels occurred on Tuesday evening, reaching 38,536.44 µg/Nm3. Overall, the ambient air quality of CO on Mendalo Darat Road tends to exceed the quality standards. The accumulation of increased CO emissions correlates closely with the road's national status, increased vehicle density due to high community activity, changes in the day's status (working day), and road conditions with traffic signal devices.

Fulltext View|Download
Keywords: Air quality assessment; carbon monoxide; traffic emissions

Article Metrics:

  1. Alberti, M.G., Jaime, C.G., 2024. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research Pollutant concentration prediction from traffic data analysis for concrete durability studies in Madrid Calle 30 urban tunnels. Tunnelling and Underground Space Technology 144, 105477
  2. Alchamdani, Azizah, R., Sulistyorini, L., Martini, S., Latif, M.T., 2021. Analisis Dampak Lockdown pada Polutan Udara Utama di Era Pandemi COVID- 19: Literature Review. Jurnal Penelitian Kesehatan Suara Forikes 12, 183–189
  3. An, F., Liu, J., Lu, W., Jareemit, D., 2021. A review of the effect of traffic-related air pollution around schools on student health and its mitigation. Journal of Transport & Health 23, 101249
  4. Aryanta, I.W.R., Maharani, S.E., 2023. Dampak Buruk Polusi Udara Bagi Kesehatan Dan Cara Meminimalkan Risikonya. Jurnal Ecocentrism 3(2), 47–58
  5. Asubiojo, O.H.J.O.I., Oluwole, F.M.A.A.F., Lewis, A.S.F.G.A., 2023. Ambient Air Quality Measurements Along High ‑ and Low ‑ Density Traffic Routes in Southwestern Nigeria. Aerosol Science and Engineering 7(4), 427–440
  6. Bakibillah, A.S.M., Kamal, M.A.S., Pin, C., Hayakawa, T., Imura, J., 2024. Optimal eco-driving scheme for reducing energy consumption and carbon emissions on curved roads. Heliyon 10(1), e23586
  7. Campagnolo, D., Borghi, F., Fanti, G., Keller, M., Rovelli, S., Spinazz, A., Cattaneo, A., Cavallo, D.M., 2023. Factors affecting in-vehicle exposure to traffic-related air pollutants: A review. Atmospheric Environment 295, 119560
  8. Chen, K., Breitner, S., Wolf, K., Stafoggia, M., Sera, F., Vicedo-cabrera, A.M., Guo, Y., Tong, S., Lavigne, E., Íñiguez, C., Forsberg, B., Åström, C., Ragettli, M.S., Guo, Y.L., Chen, B., Li, S., Milojevic, A., Zanobetti, A., Schwartz, J., Bell, M.L., Gasparrini, A., Schneider, A., 2021. Articles Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities. Lancet Planet Health 5, 191–199
  9. Condorí, L., Carbajal, G., Barlasina, M.E., 2021. Patterns and trends of ozone and carbon monoxide at Ushuaia (Argentina) observatory. Atmospheric Research 255, 105551
  10. Damara, D.Y., Wardhana, I.W., Sutrisno, E., 2017. Analisis Dampak Kualitas Udara Karbon Monoksida (CO) Di Sekitar Jl. Pemuda Akibat Kegiatan Car Free Day Menggunakan Program Caline4 Dan Surfer (Studi Kasus: Kota Semarang). Jurnal Teknik Lingkungan 6(1), 1–14
  11. Dey, S., Dhal, G.C., 2020. Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter. Materials Today Chemistry 17, 100282
  12. Dzhambov, A.M., Dimitrova, V., Germanova, N., Burov, A., Brezov, D., Hlebarov, I., Dimitrova, R., 2023. Joint associations and pathways from greenspace, traffic-related air pollution, and noise to poor self-rated general health: A population-based study in Sofia, Bulgaria. Environmental Research 231, 116087
  13. Fermi, M.I., Sasmita, A., Hafidawati, Elystia, S., Alfarobi, M.H., 2021. Analisis Dispersi Karbonmonoksida (CO) dari Transportasi di Jalan HR. Soebrantas Pekanbaru dengan Model Gaussian Line Source. Rekayasa Hijau Jurnal Teknologi Ramah Lingkungan 5(3), 218–227
  14. Ghaniyyu, F.F., Husnita, N., 2021. Upaya Pengendalian Perubahan Iklim Melalui Pembatasan Kendaraan Berbahan Bakar Minyak di Indonesia Berdasarkan Paris Agreement. Morality: Jurnal Ilmu Hukum 7(1), 110–129
  15. Gusrianti, D., Tarigan, A.P.M., Suryati, I., 2017. Analisis Sebaran Karbon Monoksida Dari Sumber Transportasi Dari Jalan Sisingamangaraja Dengan Metode Finite Length Line Source Berbasis Sistem Informasi Geografis. Jurnal Teknik Lingkungan UNAND 14(1), 41–51
  16. Hall-quinlan, D.L., He, H., Ren, X., Canty, T.P., Salawitch, J., Stratton, P., Dickerson, R.R., 2023. Inferred vehicular emissions at a near-road site: Impacts of COVID-19 restrictions, traffic patterns, and ambient air temperature. Atmospheric Environment 299, 119649
  17. Joshua, O.H., Asubiojo, O.I., Adebiyi, F.M., Oluwole, A.F., Fasuyan, A.S., Lewis, G.A. 2023. Ambient Air Quality Measurements Along High‑ and Low‑Density Traffic Routes in Southwestern Nigeria. Aerosol Science and Engineering 7, 427–440
  18. Kwon, D., Paul, K.C., Yu, Y., Zhang, K., Folle, A.D., Wu, J., Bronstein, J.M., Ritz, B., 2024. Traffic-related air pollution and Parkinson’s disease in central California. Environmental Research 240, 0–5
  19. Li, B., Cao, R., He, H., Peng, Z., Qin, H., Qin, Q., 2022. Three-dimensional diffusion patterns of traffic-related air pollutants on the roadside based on unmanned aerial vehicles monitoring. Building and Environment 219, 109159
  20. Payus, C.M., Thevan, A.T.V., Sentian, J., 2020. Impact of school traffic on outdoor carbon monoxide levels. City and Environment Interactions 4, 100032
  21. Ramadan, I., El, M., Khaled, T., Fabio, Z.H., Shaaban, I.G., Toukhy, M. El, 2022. Effect of Road, Environment, Driver, and Traffic Characteristics on Vehicle Emissions in Egypt. International Journal of Civil Engineering 20(11), 1261–1276
  22. Rambing, V. V, Umboh, J.M.L., Warouw, F., 2022. Literature Review: Gambaran Risiko Kesehatan pada Masyarakat akibat Paparan Gas Karbon Monoksida (CO). Jurnal KESMAS 11(4), 95–101
  23. Rizaldi, M.A., Azizah, R., Latif, M.T., Sulistyorini, L., Putri, B., 2022. Literature Review: Dampak Paparan Gas Karbon Monoksida Terhadap Kesehatan Masyarakat yang Rentan dan Berisiko Tinggi. Jurnal Kesehatan Lingkungan Indonesia 21(3), 253–265
  24. Saputra, I.G.K.I., Sari, K.E., Utomo, D.M., 2020. Daya serap tutupan lahan terhadap emisi karbon di koridor jalan pelabuhan celukan bawang. Planning for Urban Region and Environment 9(1), 93–100
  25. Sartori, A., Tiberio, M., Gottardo, R., Balzo, G. Del, Vermiglio, E., Raniero, D., Leo, D. De, 2024. Carbon monoxide related deaths: A Verona case series. When cooperation becomes compulsory. Legal Medicine 67, 102375
  26. Setyo, G.A., Handriyono, R.E., 2021. Analisis Penyebaran Gas Karbon Monoksida (Co) Dari Sumber Transportasi Di Jalan Tunjungan Surabaya. In: Seminar Nasional Sains Dan Teknologi Terapan IX 2021 Institut Teknologi Adhi Tama Surabaya, 360–369
  27. Sharmilaa, G., Ilango, T., 2022. A review on influence of age of vehicle and vehicle traffic on air pollution dispersion. Materials Today: Proceedings 60, 1629–1632
  28. Singh, A., Obaidat, M.S., Singh, S., Aggarwal, A., Kaur, K., Sadoun, B., Kumar, M., Hsiao, K., 2022. Simulation Modelling Practice and Theory A simulation model to reduce the fuel consumption through efficient road traffic modelling. Simulation Modelling Practice and Theory 121, 102658
  29. Turmuzi, M., Suryati, I., Mashaly, E.T., Batubara, F., 2018. Analysis of carbon monoxide (CO) with Delhi Finite Line Source (DFLS) in MT Haryono Street, Medan City. In: IOP Conference Series: Materials Science and Engineering 309, 0–7
  30. Yang, Q., Shen, H., Liang, Z., 2020. Analysis of particulate matter and carbon monoxide emission rates from vehicles in a Shanghai tunnel. Sustainable Cities and Society 56(2999), 102104
  31. Yulianti, S., Fitrianingsih, Y., Jati, D.R., 2013. Analisis Konsentrasi Gas Karbon Monoksida (CO) Pada Ruas Jalan Gajah Mada Pontianak. Jurnal Mahasiswa Teknik Lingkungan UNTAN 1(1), 1–10
  32. Zhai, C., Xu, Y., Li, K., Zhang, R., Peng, T., Zong, C., 2023. Periodic intermittent cruise control: An innovative approach for reducing fuel consumption and exhaust emissions in road traffic systems. Process Safety and Environmental Protection 177, 1197–1210
  33. Zhang, G., Chang, F., Jin, J., Yang, F., Huang, H., 2024. Multi-objective deep reinforcement learning approach for adaptive traffic signal control system with concurrent optimization of safety, efficiency, and decarbonization at intersections. Accident Analysis and Prevention 199, 107451
  34. Zhang, L., Chen, H., Li, S., Liu, Y., 2023. How road network transformation may be associated with reduced carbon emissions: An exploratory analysis of 19 major Chinese cities. Sustainable Cities and Society 95, 104575
  35. Zhang, L., Long, R., Li, W., Wei, J., 2020. Potential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: Case study in Shanghai. Journal of Transport Geography 85, 102733

Last update:

No citation recorded.

Last update: 2024-07-18 08:34:31

No citation recorded.