skip to main content

Utilization of Sidoarjo Volcanic Mud as Heterogeneous Catalyst in Persulfate Oxidation Process for Congo Red Dye Removal: A Preliminary Study

Khairunnisa Faza Nisrina  -  Universitas Indonesia, Indonesia
*Sandyanto Adityosulindro orcid scopus  -  Universitas Indonesia, Indonesia
Lucky Caesar Direstiyani orcid  -  Osaka University, Japan

Citation Format:
Abstract

Advanced Oxidation Processes (AOP), such as persulfate oxidation is a promising contaminant removal agent for treating wastewater. In this study, Sidoarjo volcanic mud (VM) was applied as heterogeneous catalyst to support the persulfate oxidation process for Congo Red (CR) dye removal. The Sidoarjo volcanic mud is known to have a high iron content, making it a potential catalyst in AOP. This study was conducted under conditions of pH 2, CR 50 mg/L, and catalyst dosage 0.5 g/L  and effective reaction volume of 300 mL. This experiment was conducted by comparing three types of catalysts: unmodified volcanic mud (UVM), impregnated volcanic mud (Fe-IVM), and calcined volcanic mud (CVM). The methods were carried out by comparing two methods, namely simultaneous and sequential. The obtained CR removal values for UVM, Fe-IVM, and CVM catalysts were 83.73%, 78.86%, 51.96% for simultaneous and 84.75%, 81.72%, and 87.69% for sequential method. Whereas the UVM catalyst has the highest CR removal value with a lower adsorption value of 16.89%. The production of sulfate radical analyzed by comparing the oxidation process of homogeneous and heterogeneous catalysts. It was shown that the application of VM catalyst as heterogeneous catalyst is very promising for dye removal in wastewater treatment.

Fulltext View|Download
Keywords: Persulfate Oxidation; congo red; vulcanic mud; heterogeneous catalyst

Article Metrics:

  1. Ahmadi, S., Igwegbe, C.A., Rahdar, S., 2019. The application of thermally activated persulfate for degradation of Acid Blue 92 in aqueous solution. International Journal of Industrial Chemistry 10, 249–260
  2. Al-Tohamy, R., Ali, S.S., Li, F., Okasha, K.M., Mahmoud, Y.A.G., Elsamahy, T., Jiao, H., Fu, Y., Sun, J., 2022. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231, 113160
  3. Cifci, D.I., Güneş, E., Güneş, Y., 2020. Treatment of dye-producing chemical industry wastewater by persulfate advanced oxidation. Environmental Research and Technology 3, 149–156
  4. Ciptawati, E., Hilfi Azra Dzikrulloh, M., Oki Septiani, M., Rinata, V., Ainur Rokhim, D., Azfa Fauziyyah, N., Sribuana, D., 2022. Analisis Kandungan Mineral dari Lumpur Panas Sidoarjo sebagai Potensi Sumber Silika dan Arah Pemanfaatannya. [Mineral Content Analysis of Sidoarjo Hot Mud as a Potential Silica Source and its Utilization Direction]. IJCA (Indonesian Journal of Chemical Analysis) 5, 18–28
  5. Deng, S., Li, Z., An, Q., Tang, M., Liu, C., Yang, Z., Xu, B., Zhao, B., 2023a. Treatment of Dyes Wastewater by the Catalytic Wet Persulfate Oxidation Process in Reactors Using Red Mud Combined with Biochar as Catalyst. Water Air Soil Pollut 234
  6. Deng, S., Yang, M., An, Q., Li, Z., Zhao, B., Ran, B., 2023b. Efficient rhodamine B dye degradation by red mud - grapefruit peel biochar catalysts activated persulfate in water. Environmental Science and Pollution Research
  7. Domingues, E., Silva, M.J., Vaz, T., Gomes, J., Martins, R.C., 2021. Persulfate process activated by homogeneous and heterogeneous catalysts for synthetic olive mill wastewater treatment. Water (Switzerland) 13
  8. Gao, T. rui, Lv, J. fang, Zhou, J. shu, Li, Y., Li, Z. yuan, 2024. Innovative technology and mechanism for comprehensive recovery of copper, nickel, zinc and iron in electroplating sludge. Separation and Purification Technology 336
  9. Gita Riani Dio, R., Bahri, S., Abadi Kiswandono, A., Supriyanto, R., 2021. Validasi Metode Fotodegradasi Congo Red Terkatalis Zno/Zeolit Y secara Spektrofotometri UV-Vis. [Validation of Zno/Zeolite-Catalyzed Congo Red Photodegradation Method by UV-Vis Spectrophotometry]. Analit: Analytical and Environmental Chemistry 6, 134–144
  10. González-Labrada, K., Quesada-Peñate, I., Velichkova, F., Julcour-Lebigue, C., Andriantsiferana, C., Manéro, M.H., Albasi, C., Jáuregui-Haza, U.J., 2019. Degradation of paracetamol in aqueous solution: Comparison of different UV induced advanced oxidation processes. Latin American Applied Research 46, 115–120
  11. Hajalifard, Z., Mousazadeh, M., Khademi, S., Khademi, N., Jamadi, M.H., Sillanpää, M., 2023. The efficacious of AOP-based processes in concert with electrocoagulation in abatement of CECs from water/wastewater. NPJ Clean Water 6, 1–25
  12. Hussain, S., Aneggi, E., Goi, D., 2021. Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review. Environ Chem Lett 19, 2405–2424
  13. Ioannidi, A., Oulego, P., Collado, S., Petala, A., Arniella, V., Frontistis, Z., Angelopoulos, G.N., Diaz, M., Mantzavinos, D., 2020. Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water. J Environ Manage 270
  14. Jalil, A.A., Triwahyono, S., Adam, S.H., Rahim, N.D., Aziz, M.A.A., Hairom, N.H.H., Razali, N.A.M., Abidin, M.A.Z., Mohamadiah, M.K.A., 2010. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. J Hazard Mater 181, 755–762
  15. Jin, H.Y., He, Z.W., Ren, Y.X., Zou, Z.S., Tang, C.C., Zhou, A.J., Liu, W., Li, Z., Wang, A., 2024. Revealing the roles of biochar derived from iron-rich fermented sludge residue in anaerobic digestion. Chemical Engineering Journal 481, 148376
  16. Kolthoff, I.M., Stenger, V.A., 1947. Volumetric Analysis second ed. Vol. II: Titration Methods: Acid–Base, Precipitation and Complex Reactions. Interscience Publishers Inc., New York
  17. Komala, P.S., Wisjnuprapto, Wenten, I.G., 2007. Pengolahan Zat Warna Azo Menggunakan Bioreaktor Membran Konsekutif Aerob-Anaerob. [Utilizing an Aerobic-Anaerobic Consecutive Membrane Bioreactor]. Prosiding Seminar Nasional Rekayasa Kimia dan Proses I.15.1-I.15.13. [Proceedings of the National Seminar on Chemical and Process Engineering I.15.1-I.15.13]
  18. Kumar, V., Pandey, N., Dharmadhikari, S., Ghosh, P., 2020. Degradation of mixed dye via heterogeneous Fenton process: Studies of calcination, toxicity evaluation, and kinetics. Water Environment Research 92, 211–221
  19. Kusic, H., Peternel, I., Ukic, S., Koprivanac, N., Bolanca, T., Papic, S., Bozic, A.L., 2011. Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix. Chemical Engineering Journal 172, 109–121
  20. Kyrii, S., Maletskyi, Z., Klymenko, N., Ratnaweera, H., Mitchenko, T., Dontsova, T., Kosogina, I., 2023. Impact of modification by red mud components on the sorption properties of activated carbon. Applied Surface Science Advances 16, 100412
  21. Laib, S., Yazid, H.R., Guendouz, N., Belmedani, M., Sadaoui, Z., 2019. Heterogeneous Fenton catalyst derived from hydroxide sludge as an efficient and reusable catalyst for anthraquinone dye degradation. Separation Science and Technology (Philadelphia) 54, 1338–1352
  22. Lama, G., Meijide, J., Sanromán, A., Pazos, M., 2022. Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts 12
  23. Lee, J., Von Gunten, U., Kim, J.H., 2020. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environmental Science Technology 54, 3064–3081
  24. Li, J., Yang, L., Lai, B., Liu, C., He, Y., Yao, G., Li, N., 2021. Recent progress on heterogeneous Fe-based materials induced persulfate activation for organics removal. Chemical Engineering Journal 414
  25. Luo, H., Fu, H., Yin, H., Lin, Q., 2022. Carbon materials in persulfate-based advanced oxidation processes: The roles and construction of active sites. Journal Hazard Material 426, 128044
  26. Luo, H., Zeng, Y., He, D., Pan, X., 2021. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chemical Engineering Journal 407
  27. Lv, X., Leng, Y., Wang, R., Wei, Y., Ren, X., Guo, W., 2022. Persulfate activation by ferrocene-based metal–organic framework microspheres for efficient oxidation of orange acid 7. Environmental Science and Pollution Research 29, 34464–34474
  28. Maicaneanu, S.A., Henninger, D.L., Lake, C.H., Addicott, E., Olar, L.E., Stefan, R., 2022. Characterization and Evaluation of Natural Bearing and Iron-Enriched Montmorillonitic Clay as Catalysts for Wet Oxidation of Dye-Containing Wastewaters. Catalysts 12
  29. Matthaiou, V., Frontistis, Z., Petala, A., Solakidou, M., Deligiannakis, Y., Angelopoulos, G.N., Mantzavinos, D., 2018. Utilization of raw red mud as a source of iron activating the persulfate oxidation of paraben. Process Safety and Environmental Protection 119, 311–319
  30. Moccia, F., Rigamonti, L., Messori, A., Zanotti, V., Mazzoni, R., 2021. Bringing homogeneous iron catalysts on the heterogeneous side: Solutions for immobilization. Molecules 26, 1–26
  31. Mustafa, F.S., Hama Aziz, K.H., 2023. Heterogeneous catalytic activation of persulfate for the removal of rhodamine B and diclofenac pollutants from water using iron-impregnated biochar derived from the waste of black seed pomace. Process Safety and Environmental Protection
  32. Park, H.S., Koduru, J.R., Choo, K.H., Lee, B., 2015. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. J Hazard Mater 286, 315–324
  33. Pervez, M.N., He, W., Zarra, T., Naddeo, V., Zhao, Y., 2020. New sustainable approach for the production of Fe3O4/Graphene oxide-activated persulfate system for dye removal in real wastewater. Water (Switzerland) 12
  34. Prosad Moulick, S., Sahadat Hossain, Md., Zia Uddin Al Mamun, Md., Jahan, F., Farid Ahmed, Md., Sathee, R.A., Sujan Hossen, Md., Ashraful Alam, Md., Sha Alam, Md., Islam, F., 2023. Characterization of waste fish bones (Heteropneustes fossilis and Otolithoides pama) for photocatalytic degradation of Congo red dye. Results in Engineering 20, 101418
  35. Pulicharla, R., Drouinaud, R., Brar, S.K., Drogui, P., Proulx, F., Verma, M., Surampalli, R.Y., 2018. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. Chemosphere 207, 543–551
  36. Putri, N.A., Nabillah, N., Novianti, U.L., Huseini, M.R., 2019. Variasi Temperatur Dan Waktu Tinggal Hidrotemalisasi Terhadap Efektifitas Lumpur Lapindo Sebagai Sumber Energi Alternatif. [Temperature Variation and Hydrotemalization Residence Time on the Effectiveness of Lapindo Mud as an Alternative Energy Source]. Seminar Nasional Sains dan Teknologi 1–5. [National Seminar of Science and Technology 1-5]
  37. Rubeena, K.K., Hari Prasad Reddy, P., Laiju, A.R., Nidheesh, P. V., 2018. Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye. J Environ Manage 226, 320–328
  38. Sa’diyah, K., Syarwani, M., Hadiantoro, S., 2017. Adsorption of Nickel in Nickel Sulphate Solution (Niso4) By Lapindo Mud. Jurnal Bahan Alam Terbarukan [Journal of Renewable Natural Materials] 6, 39–44
  39. Samir, B., Bakhta, S., Bouazizi, N., Sadaoui, Z., Allalou, O., Le Derf, F., Vieillard, J., 2021. Tbo degradation by heterogeneous fenton-like reaction using fe supported over activated carbon. Catalysts 11, 1–14
  40. Shah, I., Adnan, R., Ngah, W.S.W., Mohamed, N., 2015. Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: Regeneration and kinetics studies. PLoS One 10, 1–23
  41. Soubh, A.M., Baghdadi, M., Abdoli, M.A., Aminzadeh, B., 2018. Activation of persulfate using an industrial iron-rich sludge as an efficient nanocatalyst for landfill leachate treatment. Catalysts 8
  42. Tarekegn, M.M., Balakrishnan, R.M., Hiruy, A.M., Dekebo, A.H., 2021. Removal of methylene blue dye using nano zerovalent iron, nanoclay and iron impregnated nanoclay-a comparative study. RSC Adv 11, 30109–30131
  43. Tian, K., Shi, F., Cao, M., Zheng, Q., Zhang, G., 2022. A Review of Persulfate Activation by Magnetic Catalysts to Degrade Organic Contaminants: Mechanisms and Applications. Catalysts 12
  44. Ulfindrayani, I.F., Ikhlas, N., A’yuni, Q., Fanani, N., Gaol, B.L., Lestari, D., 2019. Pengaruh Ekstraksi SiO2 dari Lumpur Lapindo Terhadap Daya Adsorpsinya pada Larutan Metil Orange. [Effect of SiO2 Extraction from Lapindo Mud on its Adsorption Power on Methyl Orange Solution]. CHEESA: Chemical Engineering Research Articles 2, 50
  45. Vignesh, V., Shanmugam, G., 2023. Removal and recovery of hazardous congo red from aqueous environment by selective natural amino acids in simple processes. Process Biochemistry 127, 99–111
  46. Wang, J., Ding, Y., Tong, S., 2017. Fe-Ag/GAC catalytic persulfate to degrade Acid Red 73. Sep Purif Technol 184, 365–373
  47. Wang, S., Wang, J., 2018. Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes. Chemosphere 191, 97–105
  48. Wang, Z., Li, Yunhe, Shen, G., Li, Yuanqing, Zhang, X., Gou, J., Cheng, X., 2021. Synthesis of CMK/LDH and CMK/CLDH for sulfamethoxazole degradation by PS activation: A comparative study of characterization and operating parameter, mechanism pathway. Sep Purif Technol 258, 118018
  49. Weng, C.H., Tao, H., 2018. Highly efficient persulfate oxidation process activated with Fe0 aggregate for decolorization of reactive azo dye Remazol Golden Yellow. Arabian Journal of Chemistry 11, 1292–1300
  50. Xia, X., Zhu, F., Li, J., Yang, H., Wei, L., Li, Q., Jiang, J., Zhang, G., Zhao, Q., 2020. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front Chem 8
  51. Xiao, S., Cheng, M., Zhong, H., Liu, Z., Liu, Y., Yang, X., Liang, Q., 2020. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chemical Engineering Journal 384, 123265
  52. Ye, T., Liu, L., Wang, Y., Zhang, J., Wang, Z., Li, C., Luo, H., 2023. Efficient Degradation of Rhodamine B Dye through Hand Warmer Heterogeneous Activation of Persulfate. Sustainability (Switzerland) 15
  53. Zheng, X., Niu, X., Zhang, D., Lv, M., Ye, X., Ma, J., Lin, Z., Fu, M., 2022. Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review. Chemical Engineering Journal 429
  54. Zhi, K., Li, Z., Ma, P., Tan, Y., Zhou, Y., Zhang, W., Zhang, J., 2021. A review of activation persulfate by iron-based catalysts for degrading wastewater. Applied Sciences (Switzerland) 11
  55. Zhou, L., Zhang, G., Zeng, Y., Bao, X., Liu, B., Cheng, L., 2024. Endogenous iron-enriched biochar derived from steel mill wastewater sludge for tetracycline removal: heavy metals stabilization, adsorption performance and mechanism. ECSN 142263

Last update:

No citation recorded.

Last update: 2024-07-17 21:55:16

No citation recorded.