skip to main content

Assessing the Environmental and Health Impacts of Thermal Waste and Landfill-Based Waste Management in Denpasar City, Bali

Angga Dheta Shirajjudin Aji  -  Universitas Brawijaya, Indonesia
Sapta Suhardono  -  Universitas Sebelas Maret, Indonesia
*I Wayan Koko Suryawan orcid scopus  -  Universitas Pertamina, Indonesia
Wisnu Prayogo  -  Universitas Negeri Medan, Indonesia

Citation Format:
Abstract

According to Presidential Regulation No. 35 of 2018, which focuses on accelerating the development of waste-to-energy projects, Denpasar City in Bali has been identified as one of the key Indonesian cities for implementing these projects. The daily waste generation in Denpasar City is estimated at 750 tons. The city's sanitation strategy outlines that 20% of this waste will be reduced at its source, while the remaining 80% is managed at the final treatment site. This study employs the Life Cycle Analysis (LCA) approach to evaluate the environmental impacts of traditional landfilling and various thermal waste treatment methods. The findings reveal that gasification (Scenario 2) has the lowest Global Warming Potential (GWP), with 779,759 kg CO2 equivalent emitted, indicating its superiority in reducing greenhouse gases. In contrast, landfilling (Scenario 1) is the least favorable, with a GWP of 2,885,770 kg CO2 equivalent and a significant cancer risk due to hexavalent chromium emissions estimated at 1,634,050 kg equivalent. These results underscore the health and environmental hazards of landfilling. Further, the study delves into each treatment scenario's impact on acidification, eutrophication, global warming potential, and photochemical oxidation.

Fulltext View|Download
Keywords: Denpasar City; impact scenario; LCA; thermal; waste to energy

Article Metrics:

Article Info
Section: Regional Case Study
Language : EN
  1. Abdulkareem, M., Havukainen, J., Nuortila-Jokinen, J. and Horttanainen, M., 2021. Life cycle assessment of a low-height noise barrier for railway traffic noise. Journal of Cleaner Production, 323, 129169
  2. AlNouss, A., McKay, G. and Al-Ansari, T., 2020. Production of syngas via gasification using optimum blends of biomass. Journal of Cleaner Production, 242, 118499
  3. Arbain, A., Mardana, N.K. and Sudana, I.B., 2009. Pengaruh Air Lindi Tempat Pembuangan Akhir Sampah Suwung terhadap Kualitas Air Tanah Dangkal di Sekitarnya di Kelurahan Pedungan Kota Denpasar. Ecotrophic, 3(2), pp.387-818
  4. Atabani, A.E., Al-Muhtaseb, A.H., Kumar, G., Saratale, G.D., Aslam, M., Khan, H.A., Said, Z. and Mahmoud, E., 2019. Valorization of spent coffee grounds into biofuels and value-added products: Pathway towards integrated bio-refinery. Fuel, 254, 115640
  5. Banaget, C.K., Frick, B. and Saud, M., 2020. Analysis of electricity generation from landfill gas (case study: Manggar Landfill, Balikpapan). IOP Conference Series: Earth and Environmental Science, 448(1), 012003
  6. Batool, N., Qazi, J.I., Aziz, N., Hussain, A. and Shah, S.Z.H., 2020. Bio-methane production potential assays of organic waste by anaerobic digestion and co-digestion. Pakistan Journal of Zoology, 52(3), pp.971-979
  7. Binaghi, L., Del Borghi, M. and Gallo, M., 2007. The Application of the Environmental Product Declaration to Waste Disposal in a Sanitary Landfill - Four Case Studies (10 pp). The International Journal of Life Cycle Assessment, 12(1), pp.40-49
  8. Chairani, R., Adinda, A.R., Fillipi, D., Jatmoko, M. and Suryawan, I.W.K., 2021. Environmental Impact Analysis in the Cement Industry with Life Cycle Assessment Approach. JTERA (Jurnal Teknologi Rekayasa), 6(1), pp.139-146
  9. Chen, D., Yin, L., Wang, H. and He, P., 2014. Pyrolysis technologies for municipal solid waste: A review. Waste Management, 34(12), pp.2466-2486
  10. Cherubini, F., Bargigli, S. and Ulgiati, S., 2009. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy, 34(12), pp.2116-2123
  11. Colón, J., Martínez-Blanco, J., Gabarrell, X., Artola, A., Sánchez, A., Rieradevall, J. and Font, X., 2010. Environmental assessment of home composting. Resources, Conservation and Recycling, 54(11), pp.893-904
  12. Cristello, J.B., Yang, J.M., Hugo, R., Lee, Y. and Park, S.S., 2023. Feasibility analysis of blending hydrogen into natural gas networks. International Journal of Hydrogen Energy, 48(46), pp.17605-17629
  13. Dana, G.W.P. and Saraswati, I.A.D.Y., 2022. Potential Methane Gas Emissions as Renewable Energy at the Suwung Waste Final Processing Area. Jurnal Pendidikan Tambusai, 6(2), pp.13850-13858
  14. dos Santos, R.G. and Alencar, A.C., 2020. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. International Journal of Hydrogen Energy, 45(36), pp.18114-18132
  15. Du, M., Peng, C., Wang, X., Chen, H., Wang, M. and Zhu, Q., 2017. Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renewable and Sustainable Energy Reviews, 78, pp.272-279
  16. Etea, T., Girma, E. and Mamo, K., 2021. Risk Perceptions and Experiences of Residents Living Nearby Municipal Solid Waste Open Dumpsite in Ginchi Town, Ethiopia: A Qualitative Study. Risk Management and Healthcare Policy, 14, pp.2035-2044
  17. Gede, C. and Partha, I., 2010. Penggunaan Sampah Organik sebagai Pembangkit Listrik di TPA Suwung-Denpasar. Majalah Ilmiah Teknologi Elektro, 9(2), pp.152-158
  18. Gunamantha, I.M., 2011. Memprediksi higher heating value komponen biogenik sampah dari data analisis ultimatnya. Jurnal Penelitian dan Pengembangan Sains & Humaniora, 5(3), pp.236-258
  19. Handriyani, K.A.T.S., Habibah, N. and Dhyanaputri, I.G.A.S., 2020. Analisis Kadar Timbal (Pb) Pada Air Sumur Gali Di Kawasan Tempat Pembuangan Akhir Sampah Banjar Suwung Batan Kendal Denpasar Selatan. JST (Jurnal Sains dan Teknologi), 9(1), pp.68-75
  20. Helen, L.A., H.J.P., Gopal, A., Joong-Jae, K. and F., D.P., 2018. Investigation of Biologically Stable Biofilter Medium for Methane Mitigation by Methanotrophic Bacteria. Journal of Hazardous, Toxic, and Radioactive Waste, 22(3), 04018013
  21. Jayawardhana, Y., Mayakaduwa, S.S., Kumarathilaka, P., Gamage, S. and Vithanage, M., 2019. Municipal solid waste-derived biochar for the removal of benzene from landfill leachate. Environmental Geochemistry and Health, 41(4), pp.1739-1753
  22. Karmore, V. and Madras, G., 2000. Continuous Distribution Kinetics for the Degradation of Polystyrene in Supercritical Benzene. Industrial & Engineering Chemistry Research, 39(11), pp.4020-4023
  23. Kaur, A., Bharti, R. and Sharma, R., 2023. Municipal solid waste as a source of energy. Materials Today: Proceedings, 81, pp.904-915
  24. Kementerian Lingkungan Hidup dan Kehutanan, 2021. Sistem informasi Pengelolaan Sampah Nasional. Available at: http://sipsn.menlhk.go.id
  25. Khuriati, A., Purwanto, P., Setiyo Huboyo, H., Suryono, S. and Bawono Putro, A., 2018. Application of aspen plus for municipal solid waste plasma gasification simulation: case study of Jatibarang Landfill in Semarang Indonesia. Journal of Physics: Conference Series, 1025, 012006
  26. Kim, D.-H. and Oh, S.-E., 2011. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions. Waste Management, 31(9), pp.1943-1948
  27. Kirkeleit, J., Riise, T., Gjertsen, B.T., Moen, B.E., Bratveit, M. and Bruserud, O., 2008. Effects Of Benzene on Human Hematopoiesis. The Open Hematology Journal, 2(1), pp.87-102
  28. Kistiawan, T. and Irawan, A.P., 2023. Analysis of annual rainfall distribution and planned rain intensity at 11 (Eleven) rain post stations in Serang district. International Journal of Entrepreneurship Business Development, 6(5), pp.945-958
  29. Legino, S., Hidayawanti, R., Putra, I.S. and Pribadi, A., 2019. Reducing coal consumption by people empowerment using local waste processing unit. Journal of Physics: Conference Series, 1217, 012028
  30. Li, K., Wu, J.Q., Jiang, L.L., Shen, L.Z., Li, J.Y., He, Z.H., Wei, P., Lv, Z. and He, M.F., 2017. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. Chemosphere, 171, pp.40-48
  31. Ma, S., Zhou, C., Pan, J., Yang, G., Sun, C., Liu, Y., Chen, X. and Zhao, Z., 2022. Leachate from municipal solid waste landfills in a global perspective: Characteristics, influential factors and environmental risks. Journal of Cleaner Production, 333, 130234
  32. Martins das Neves, L.C., Converti, A. and Vessoni Penna, T.C., 2009. Biogas production: New trends for alternative energy sources in rural and urban zones. Chemical Engineering & Technology, 32(8), pp.1147-1153
  33. Noviarini, C., Rahman, A., Suryawan, I., Koko, W., Septiariva, I.Y. and Suhardono, S., 2022. Global warming potential from public transportation activities during COVID-19 pandemic in Jakarta, Indonesia. International Journal of Safety and Security Engineering, 5, pp.15-19
  34. Pemerintah Kota Denpasar, 2013. Laporan strategi sanitasi kota (SSK) Kota Denpasar. Available at: http://ppsp.nawasis.info/dokumen/perencanaan/sanitasi/pokja/ssk/kota.denpasar/GABUNGAN ALL BAB PEMUTAKHIRAN SSK DPS 2013.PDF [Accessed 13 April 2024]
  35. Qodriyatun, S.N., 2021. Pembangkit listrik tenaga sampah: Antara permasalahan lingkungan dan percepatan pembangunan energi terbarukan. Aspirasi: Jurnal Masalah-Masalah Sosial, 12(1), pp.63-84
  36. Qonitan, F.D., Suryawan, I.W.K. and Rahman, A., 2021. Overview of municipal solid waste generation and energy utilization potential in major cities of Indonesia. Journal of Physics: Conference Series, 1858(1), 012064
  37. Rachman, R.A., Suhardjono, S. and Juwono, P.T., 2014. Studi pengendalian banjir di kecamatan Kepanjen dengan sumur resapan. Jurnal Teknik Pengairan, 5(1), pp.79-90
  38. Raksasat, R., Kiatkittipong, K., Kiatkittipong, W., Wong, C.Y., Lam, M.K., Ho, Y.C., Oh, W.D., Suryawan, I.W.K. and Lim, J.W., 2021. Blended sewage sludge–palm kernel expeller to enhance the palatability of black soldier fly larvae for biodiesel production. Processes, 9(2), 0297
  39. Reckhow, K.H. and Chapra, S.C., 1983. The need for simple approaches for the estimation of lake model prediction uncertainty. In: Uncertainty and Forecasting of Water Quality, pp.293-303. Springer
  40. Rifai, B., Joko, T. and Darundiati, Y.H., 2016. Analisis risiko kesehatan lingkungan pajanan gas hidrogen sulfida (H2S) pada pemulung akibat timbulan sampah di TPA Jatibarang Kota Semarang. Jurnal Kesehatan Masyarakat (Undip), 4(3), 13482
  41. Roesch, A., Sala, S. and Jungbluth, N., 2020. Normalization and weighting: the open challenge in LCA. The International Journal of Life Cycle Assessment, 25(9), pp.1859-1865
  42. Roy, H., Alam, S.R., Bin-Masud, R., Prantika, T.R., Pervez, M.N., Islam, M.S. and Naddeo, V., 2022. A review on characteristics, techniques, and waste-to-energy aspects of municipal solid waste management: Bangladesh perspective. Sustainability, 14(16), 10265
  43. Sari, M.M., Inoue, T., Rofiah, R., Septiariva, I.Y., Prayogo, W., Suryawan, I.W.K. and Arifianingsih, N.N., 2023. Transforming bubble wrap and packaging plastic waste into valuable fuel resources. Journal of Ecological Engineering, 24(8), pp.260-270
  44. Sari, M.M., Inoue, T., Salsabilla, V.C., Septiariva, I.Y., Mulyana, R., Prayogo, W., Arifianingsih, N.N., Suhardono, S. and Suryawan, I.W.K., 2024. Transforming disposable masks to sustainable gasoline-like fuel via pyrolysis. Environmental Advances, 15, 100466
  45. Sarwono, A., Septiariva, I.Y., Qonitan, F.D., Zahra, N.L., Sari, N.K., Fauziah, E.N., Ummatin, K.K., Amoa, Q., Faria, N., Wei, L.J. and Suryawan, I.W.K., 2021. Refuse derived fuel for energy recovery by thermal processes: A case study in Depok City, Indonesia. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 88(1), pp.12-23
  46. Septiariva, I.Y. and Suryawan, I.W.K., 2021. Development of water quality index (WQI) and hydrogen sulfide (H2S) for assessment around Suwung landfill, Bali Island. Journal of Sustainability Science and Management, 16(4), pp.137-148
  47. Setiowati, D., 2017. High urinary phenol levels and health complaints in workers exposed to benzene in the small sandal industry in Wedoro Sidoarjo. Jurnal Kesehatan Lingkungan, pp.402-408
  48. Siddiqua, A., Hahladakis, J.N. and Al-Attiya, W.A.K.A., 2022. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research, 29(39), pp.58514-58536
  49. Siddiqui, F.Z., Rafey, A., Pandey, S. and Khan, M.E., 2022. Pilot demonstration of clean technology for landfill gas recovery in India–A case study. Cleaner Chemical Engineering, 2, 100024
  50. Sizirici, B. and Tansel, B., 2010. Projection of landfill stabilization period by time series analysis of leachate quality and transformation trends of VOCs. Waste Management, 30(1), pp.82-91
  51. Suryawan, I.W.K. and Lee, C.-H., 2023. Citizens' willingness to pay for adaptive municipal solid waste management services in Jakarta, Indonesia. Sustainable Cities and Society, 97
  52. Suryawan, I.W.K., Rahman, A., Septiariva, I.Y., Suhardono, S. and Wijaya, I.M.W., 2021. Life cycle assessment of solid waste generation during and before the pandemic of COVID-19 in Bali Province. Journal of Sustainability Science and Management, 16(1), pp.11-21
  53. Suryawan, I.W.K., Septiariva, I.Y., Fauziah, E.N., Ramadan, B.S., Qonitan, F.D., Zahra, N.L., Sarwono, A., Sari, M.M., Ummatin, K.K. and Wei, L.J., 2022. Municipal solid waste to energy: Palletization of paper and garden waste into refuse derived fuel. Journal of Ecological Engineering, 23(4), pp.64-74
  54. Suryawan, I.W.K., Septiariva, I.Y., Sari, M.M., Ramadan, B.S., Suhardono, S., Sianipar, I.M.J., Tehupeiory, A., Prayogo, W. and Lim, J.-W., 2023. Acceptance of waste to energy (WtE) technology by local residents of Jakarta City, Indonesia to achieve sustainable clean and environmentally friendly energy. Journal of Sustainable Development of Energy, Water and Environment Systems, 11(2), 1004
  55. Susanto, H., Suria, T. and Pranolo, S.H., 2018. Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia. IOP Conference Series: Materials Science and Engineering, 334, 012012
  56. Susilowati, S., Alisjahbana, S.W. and Kusumastuti, D.I., 2022. Estimation of intensity duration frequency for ungauged basin in Lampung Province, Indonesia. International Journal of Design & Nature and Ecodynamics, 17(2), pp.297-302
  57. Tenodi, S., Krčmar, D., Agbaba, J., Zrnić, K., Radenović, M., Ubavin, D. and Dalmacija, B., 2020. Assessment of the environmental impact of sanitary and unsanitary parts of a municipal solid waste landfill. Journal of Environmental Management, 258, 110019
  58. Twidyawati, A., Nurbani, Prasetyo, W.B., Manurung, S.E. and Pebriadi, A.M., 2021. Adaptation and mitigation strategies for impacts and efforts of climate change in Indonesia. IOP Conference Series: Earth and Environmental Science, 824(1), 012092
  59. Udomsirichakorn, J. and Salam, P.A., 2014. Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification. Renewable and Sustainable Energy Reviews, 30, pp.565-579
  60. Vakylabad, A.B. and Moravvej, Z., 2023. Environmental challenges of gases vent from flares and chimneys. In Crises in Oil, Gas and Petrochemical Industries, pp.307-333. Elsevier
  61. Van Haaren, R., Themelis, N.J. and Barlaz, M., 2010. LCA comparison of windrow composting of yard wastes with use as alternative daily cover (ADC). Waste Management, 30(12), pp.2649-2656
  62. Wang, Y., Levis, J.W. and Barlaz, M.A., 2020. An assessment of the dynamic global warming impact associated with long-term emissions from landfills. Environmental Science & Technology, 54(3), pp.1304-1313
  63. Wei, Y., Ding, D., Gu, T., Xu, Y., Sun, X., Qu, K., Sun, J. and Cui, Z., 2023. Ocean acidification and warming significantly affect coastal eutrophication and organic pollution: A case study in the Bohai Sea. Marine Pollution Bulletin, 186, 114380
  64. Winardi, A., Mochtar, N.E. and Sari, P.T.K., 2022. Planning for a sanitary landfill and landfill base layers at the Sekoto landfill in Kediri District. Jurnal Teknik ITS, 11(1), pp.D1-D8
  65. Yang, H.-H., Luo, S.-W., Lee, K.-T., Wu, J.-Y., Chang, C.W. and Chu, P.F., 2016. Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method. Journal of the Air & Waste Management Association, 66(8), pp.807-814
  66. Yodi, Y., Suryawan, I.W.K. and Afifah, A.S., 2020. Estimation of greenhouse gas (GHG) emission at Telaga Punggur landfill using triangular, LandGEM, and IPCC methods. Journal of Physics: Conference Series, 1456(1)
  67. You, S., Tong, H., Armin-Hoiland, J., Tong, Y.W. and Wang, C.-H., 2017. Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia. Applied Energy, 208, pp.495-510
  68. Zahedi, R., Daneshgar, S. and Golivari, S., 2022. Simulation and optimization of electricity generation by waste to energy unit in Tehran. Sustainable Energy Technologies and Assessments, 53, 102338
  69. Zaman, A.U., 2010. Comparative study of municipal solid waste treatment technologies using life cycle assessment method. International Journal of Environmental Science & Technology, 7(2), pp.225-234

Last update:

No citation recorded.

Last update: 2024-07-18 08:30:36

No citation recorded.