skip to main content

Microbiologically Induced Corrosion (MIC) of Carbon Steel in Biodiesel: a Comparative Analysis

Junaidi Junaidi  -  Universitas Diponegoro, Indonesia
Tjandra Setiadi  -  Institut Teknologi Bandung, Indonesia
Hary Devianto  -  Institut Teknologi Bandung, Indonesia
Wolfgang Schmahl  -  University of Munich, Germany
*Yustina Metanoia Pusparizkita  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract

The damaging process known as microbiologically influenced corrosion (MIC) can be triggered by the bioactivities of microorganisms. The occurrence of this phenomenon can be attributed to the presence of biodiesel in carbon steel diesel mixture storage tanks, since the biodegradability of the fuel promotes microbial development and the MIC process. In this work, the effects of different biodiesel concentrations (B0, B15, B20, B30, and B100) on biocorrosion in ST-37 carbon steel caused by three species were investigated. Some of the species confirmed to be involved are S. marcescens, B. megaterium and B. lichenisformis. These three species are undoubtedly able to survive in a biodiesel-based media. In addition to producing EPS, a species that may slow the rate at which carbon steel corrodes, biodiesel can be utilised as a supply of nutrients. Nonetheless, the diverse life cycles of microbes have the potential to accelerate corrosion of carbon steel. The average corrosion rate with the effect of B. lichenisformis is lower than the other two species, notably in the B100, with fewer colonies than S. marcescens and B. megaterium.Some of the species confirmed to be involved are S. marcescens, B. megaterium and B. lichenisformis.

Fulltext View|Download
Keywords: Corrosion; biofilm; hydrocarbons; biofuels; microorganism

Article Metrics:

  1. Adama, K.K., Ukhurebor, K.E., Pal, K., Hossain, I., 2024. Effect of neem oil biodiesel on the surface and structural integrity of carbon steel alloy: Chromatographic, spectroscopic, and morphological investigations. International Journal of Biological Macromolecules 269, 132199
  2. Aslan, C., Aulia, N.I., Devianto, H., Harimawan, A., 2022. Influence of axenic culture of Bacillus clausii and mixed culture on biofilm formation, carbon steel corrosion, and methyl ester degradation in B30 storage tank system. Journal of Environmental Chemical Engineering 10, 108013
  3. Characklis, W.G., Marshall, K.C., 1990. Biofilms. Wiley, New York
  4. Demirbas, A., 2009. Progress and recent trends in biodiesel fuels. Energy Conversion and Management 50, 14–34
  5. Dunne jr, M.W., 2002. Bacterial adhesion : seen any good biofilms lately? Clin.Microbiol. Rev 15, 155–166
  6. Eleryan, A., Hassaan, M.A., Aigbe, U.O., Ukhurebor, K.E., Onyancha, R.B., El-Nemr, M.A., Ragab, S., Hossain, I., El Nemr, A., 2024. Kinetic and isotherm studies of Acid Orange 7 dye absorption using sulphonated mandarin biochar treated with TETA. Biomass Conversion and Biorefinery 14, 10599–10610
  7. Eryilmaz, T., Yesilyurt, M.K., 2016. Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel. Renewable Energy 95, 233–247
  8. Fardilah, V., Pusparizkita, Y., Aslan, C., Schmahl, W., Kaliwoda, M., Setiadi, T., Devianto, H., Harimawan, A., Bayuseno, A., 2022. Assessment on the Pitting-Corrosion of 1037-Mild Carbon Steel by Bacteria in B30 Biodiesel Product. Journal of Bio- and Tribo-Corrosion 8
  9. Groysman, A., 2014. Corrosion in systems for storage and transportation of petroleum products and biofuels. Springer
  10. Heyer, A., D’Souza, F., Morales, C.F.L., Ferrari, G., Mol, J.M.C., Wit, J.H.W. de, 2013. Ship ballast tanks a review from microbial corrosion and electrochemical point of view. Ocean Engineering 70, 188–200
  11. Jan-Roblero, J., Posadas, A., Zavala-Dıaz de la Serna, F., Garcıa, R., 2008. Phylogenetic characterization of bacterial consortia obtained of corroding gas pipelines in Mexico. World Journal Microbiol Biotechnol 24, 1775–1784
  12. Lee, J.S., Ray, R.I., Little, B.J., 2010. An assessment of alternative diesel fuels: microbiological contamination and corrosion under storage conditions. Biofouling 26, 623–35
  13. Monroe, D., 2007. Looking for chinks in the armor of bacterial biofilms. PLoS Biology 5, 307
  14. Muthukumar, N., Mohanan, S., Maruthamuthu, S., Subramanian, P., Palaniswamy, N., Raghavan, M., 2003. Role of Brucella sp. and Gallionella sp. in oil degradation and corrosion. Electrochem Commun 5, 412–426
  15. Pusparizkita, Y., Harimawan, A., Devianto, H., Setiadi, T., 2021. Effect of bacillus megaterium biofilm and its metabolites at various concentration biodiesel on the corrosion of carbon steel storage tank. Biointerface Research in Applied Chemistry 12, 5698–5708
  16. Pusparizkita, Y.M., Aslan, C., Schmahl, W.W., Devianto, H., Harimawan, A., Setiadi, T., Ng, Y.J., Bayuseno, A.P., Show, P.L., 2023. Microbiologically influenced corrosion of the ST-37 carbon steel tank by Bacillus licheniformis present in biodiesel blends. Biomass and Bioenergy 168, 106653
  17. Pusparizkita, Y.M., Schmahl, W., Setiadi, T., Ilsemann, B., Reich, M., Devianto, H., Harimawan, A., 2020. Evaluation of Bio-Corrosion on Carbon Steel by Bacillus Megaterium in Biodiesel and Diesel Oil Mixture. Journal of Engineering and Technological Sciences; Vol 52, No 3 (2020)
  18. Pusparizkita, Y.M., Setiadi, T., Harimawan, A., 2018. Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens. MATEC Web Conf. 156
  19. Rajasekar, A., Ganesh Babu, T., Maruthamuthu, S., Karutha Pandian, S.T., Mohanan, S., Palaniswamy, N., 2007. Biodegradation and corrosion behaviour of Serratia marcescens ACE2 isolated from an Indian diesel-transporting pipeline. World Journal of Microbiology and Biotechnology 23, 1065–1074
  20. Rajasekar, A., Maruthamuthu, S., Muthukumar, N., Mohanan, S., Subramanian, P., Palaniswamy, N., 2005. Bacterial degradation of naphtha and its influence on corrosion. Corrosion Science 47, 257–271
  21. Rao, T.S., 2012. Microbial Fouling and Corrosion: Fundamentals and Mechanisms. In: Rajagopal, S., Jenner, H.A., Venugopalan, V.P. (Eds.), Operational and Environmental Consequences of Large Industrial Cooling Water Systems. Springer US, Boston, MA, pp. 95–126
  22. Roberge, P.R., 2008. Corrosion engineering : principles and practice. McGraw-Hill New York, New York
  23. Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., Nomura, N., 2016. Environmental factors that shape biofilm formation. Bioscience, Biotechnology, and Biochemistry 80, 7–12
  24. Von Wolzogen Kuehr, C.A.H., van der Vlugt, L.S., 2006. Graphitization of cast iron as an electrobiochemical process in anaerobic soils
  25. Welikala, S., Al-Saadi, S., Gates, W.P., Panter, C., Singh Raman, R.K., 2024. Sulphate reducing bacteria (SRB) biofilm development and its role in microbial corrosion of carbon steel. Frontiers in Materials 11
  26. Wikieł, A.J., Datsenko, I., Vera, M., Sand, W., 2014. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment. Bioelectrochemistry 97, 52–60
  27. Wu, S., Yassine, M.H., Suidan, M.T., Venosa, A.D., 2015. Anaerobic biodegradation of soybean biodiesel and diesel blends under methanogenic conditions. Water Res 87, 395–402
  28. Zhu, X.Y., Lubeck, J., Kilbane, J.J., 2003. Characterization of microbial communities in gas industry pipelines. Applied and Environmental Microbiology 69, 5354–5363

Last update:

No citation recorded.

Last update: 2024-11-23 14:00:00

No citation recorded.