skip to main content

Implementing Biodrying Method for Waste Processing in Salatiga City

*Nurandani Hardyanti  -  Universitas Diponegoro, Indonesia
Badrus Zaman  -  Universitas Diponegoro, Indonesia
Rezza Anferditya Bagaskhara  -  Universitas Diponegoro, Indonesia
Harsya Giras Hasfiawan  -  Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Waste processing in Salatiga City could have been more optimal. It can be seen from the data from the Salatiga City Environment Service that the waste processing facility in the form of an active waste processing site with reduce-reuse-recycle is only one out of seven registered units. This has the potential to cause accumulation at the final processing site. Therefore, it is necessary to develop an effective waste processing facility. Planning for waste processing using the biodrying method can effectively process waste that produces products in the form of Refuse Derived Fuel (RDF)[1] [Ma2] . Planning for waste processing is carried out until 2032 in two service areas: Service area 1 (Argomulyo District and Tingkir District) and service area 2 (Sidorejo District and Sidomukti District). The amount of waste generated by service area 1 reaches 49.33 tons/day and 522.67 m3/day, while service area 2 reaches 49.62 tons/day and 414.01 m3/day. Planning for waste processing using the drying method includes picking bay units, shredding, drying, screening, and loading RDF.[3] [Ma4]  RDFs potential in 2032 as a result of waste processing in service area 1 is 11159.03 tons/year with sales of Rp. 7,270,755,009 / year and in service area 2 it is 10,471.09 tons / year with sales of Rp. 6,822,524,206 / year

Fulltext View|Download
Keywords: Waste Processing Planning; Refuse Derived Fuel; Biodrying; RDF; Salatiga City

Article Metrics:

  1. Ari PMS, Rahadian R and Tarwotjo U. (2019) Community structure of soil microarthropods in active and passive zones of Ngronggo landfill Salatiga. NICHE Journal of Tropical Biology 2: 1-6
  2. Bismi, A. 2015. Asesmen Potensi Recovery Energi Dari Sampah Perkotaan di TPA (Tempat Pemrosesan Akhir) Sampah Untuk Infrastruktur Persampahan Berkelanjutan. Annual Civil Engineering Seminar, 235-242
  3. Badan Standarisasi Nasional. 2008. Standar Nasional Indonesia Nomor SNI 3242:2008 tentang Pengelolaan Sampah di Permukiman. Standar Nasional Indonesia, 1-17
  4. Bialowiec, A. 2014. Method of treatment and reducing the mass of landfilled municipal waste. European Patent Office, EP 3017886A1, 1-27
  5. Bilgin, M., and Tulun, S. 2015. Biodrying for Municipal Solid Waste: Volume and Weight Reduction. Environmental Technology 36(13), 1691–1697
  6. Caputo, A.C., and Pelagagge, P.M. 2002. RDF production plants: I Design and costs. Applied Thermal Engineering 22(4), 423–437
  7. Chingono, T.T., Mbohwa, C. 2023. Humanitarian Logistics in the Industry 4.0. in: Supply Networks in Developing Countries: Sustainable and Humanitarian Logistics in Growing Consumer Markets, Emerald Publishing Limited, pp. 99-127
  8. Chioatto, E., Sospiro, P. 2023. Transition from waste management to circular economy: the European Union roadmap. Environment, Development and Sustainability, 25(1), 249-276
  9. Damanhuri, E. 2010. Diktat Pengelolaan Sampah. Teknik Lingkungan Institut Teknologi Bandung (ITB), 1-30
  10. Damanhuri, E., and Padmi, T. 2016. Pengelolaan Sampah Terpadu. Teknik Lingkungan Institut Teknologi Bandung (ITB). 1-60
  11. Damanhuri, E., and Padmi, T. 2010. Pengelolaan Sampah Edisi Semester I–2010/2011. Institut Teknologi Bandung, 1-30
  12. Darmasetiawan, M. 2004. Sarana Sanitasi Perkotaan. Ekamitra Engineering
  13. Das, S., Lee, S.-H., Kumar, P., Kim, K.-H., Lee, S.S., Bhattacharya, S.S. 2019. Solid waste management: Scope and the challenge of sustainability. Journal of cleaner production, 228, 658-678
  14. Dinas Cipta Karya. 2016. Tentang Organisasi dan Tata Kerja Dinas Pekerjaan Umum
  15. Dinas Lingkungan Hidup Kota Salatiga. 2016. Laporan Akhir Penyusunan Rencana Induk Persampahan Kota Salatiga, 1-325
  16. Direktorat Jenderal Cipta Karya Kementerian Pekerjaan Umum dan Perumahan Rakyat. 2019. Tentang Alokasi Dana Perencanaan TPST Melalui Bantuan Pemerintah
  17. Direktorat Jenderal Cipta Karya. 2017. Tentang Tata Cara Penilaian TPS3R
  18. Durugbo, C., Amankwah‐Amoah, J. 2019. Global sustainability under uncertainty: How do multinationals craft regulatory policies? Corporate Social Responsibility and Environmental Management, 26(6), 1500-1516
  19. Gendebien, A. 2003. Refuse Derived Fuel, Current Practice and Perspectives Final Report. European Commission Directorate General Environment, 1-218
  20. He, P. 2010. Release of Volatile Organic Compounds During Bio-drying of Municipal Solid Waste. Journal of Environmental Sciences 22(5), 752–759
  21. Basri, H. 2016. Biodrying Of Municipal Solid Waste Under Different Ventilation Periods. Environmental Engineering Research 2(2), 145–151
  22. Liu, D.C., Lin, Y.K., and Chen, M.T. 2001. Optimum Condition of extracting collagen from Chicken feet and its characteristics. Asian-Australasian Journal of Animal Science 14(11), 1638–1644
  23. Murtadho, D., and Gumbira, S. 1987. Penanganan dan Pemanfaatan Limbah. Padat. Mediyatama Sarana Perkasa
  24. Pang S., Asngari, Tjitropranoto, Prabowo, and Susanto, D. 2008. Kapasitas Petani dalam Mewujudkan Keberhasilan Usaha Pertanian: Kasus Petani Sayuran di Kabupaten Pasuruan dan Kabupaten Malang Provinsi Jawa Timur. Jurnal Penyuluhan Institut Pertanian Bogor 4(1), 11-20
  25. Prihandana, R. 2007. Bioenergi Ubi Kayu Bahan Bakar Masa Depan. Agromedia Pustaka
  26. Rada, E.C. 2007. Lower Heating Value Dynamics during Municipal Solid Waste Bio-Drying. Environmental Technology 28(4), 463–469
  27. Rahmawati. 2017. Partisipasi Masyarakat Dalam Pengelolaan Sampah Di Lingkungan Margaluyu Kelurahan Cicurug. Share Social Work Jurnal 5(1), 2339–0042
  28. Sadaka, S. 2010. Partial. Composting for Biodrying Organic. Materials Agriculture and Natural Resources Research & Extension FSA1055, 1-4
  29. Shah, R., and Ward, P.T. 2007. Defining and developing measures of lean production. Journal of Operations Management 25 (4), 785–805
  30. Shao, L.M. 2015. Biodrying of Municipal Solid Waste Under Different Ventilation Modes: Drying Efficiency and Aqueous Pollution. Waste Manag 30(12), 1272–1280
  31. Shuqing, Z. 2014. The effect of bio-drying pretreatment on Heating Values of Municipal Solid Waste. Advanced Material Research 1010-1012, 537-546
  32. Tom, A.P. 2016. Biodrying process: A Sustainable Technology for Treatment of Municipal Solid Waste with High Moisture Content. Waste Management 49, 64–72
  33. Undang-undang Republik Indonesia Nomor 18 Tahun 2008 tentang Pengelolaan Sampah. Sekretariat Negara
  34. Valones AGM and Junaedi UA. (2023) Urban Green Space Policy Reform in Indonesia: Breathing in the Middle of Development. Journal of Law and Legal Reform 4: 183-210
  35. Velis, C.A. 2009. Biodrying for mechanical biological treatment of wastes: A review of process science and engineering. Bioresource Technology 100(11), 2747-2761
  36. Yuan, J. 2018. Effects of The Aeration Pattern, Aeration Rate, and Turning Frequency on Municipal Solid Waste Biodrying Performance. Journal of Environmental Management 218, 416–424
  37. Zhang, D. 2008. Biodrying of municipal solid waste with high water content by combined hydrolytic-aerobic technology. Journal of Environmental Management 20(12), 1534–1540
  38. Edo-Alcón, N., Gallardo, A., Colomer-Mendoza, F.J., Lobo, A. 2024. Efficiency of biological and mechanical-biological treatment plants for MSW: The case of Spain. Heliyon, 10(4)
  39. Gautam, H.C., Yadav, V., Singh, V. 2022. IoT-Enabled Services for Sustainable Municipal Solid Waste Management in India. in: IoT-Based Smart Waste Management for Environmental Sustainability, CRC Press, pp. 83-98
  40. Haar, Q. 2023. Refuse Derived Fuels (RDF) and Solid Recovered Fuels (SRF) A case study of characteristics and opportunities, NTNU
  41. Hornsby, C., Ripa, M., Vassillo, C., Ulgiati, S. 2017. A roadmap towards integrated assessment and participatory strategies in support of decision-making processes. The case of urban waste management. Journal of Cleaner Production, 142, 157-172
  42. Jalaei, F., Zoghi, M., Khoshand, A. 2021. Life cycle environmental impact assessment to manage and optimize construction waste using Building Information Modeling (BIM). International Journal of Construction Management, 21(8), 784-801
  43. Khan, S., Anjum, R., Raza, S.T., Bazai, N.A., Ihtisham, M. 2022. Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere, 288, 132403
  44. Lubongo, C., Alexandridis, P. 2022. Assessment of performance and challenges in use of commercial automated sorting technology for plastic waste. Recycling, 7(2), 11
  45. Malav, L.C., Yadav, K.K., Gupta, N., Kumar, S., Sharma, G.K., Krishnan, S., Rezania, S., Kamyab, H., Pham, Q.B., Yadav, S. 2020. A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. Journal of Cleaner Production, 277, 123227
  46. Muzanni, A., Lestari, F., Chalid, M., Wardani, W.K., Satyawardhani, S.A., Kristanto, G.A., Zulys, A. 2022. Multi-Sectoral Partnership for Waste Management Evaluation and Awards Recognition in Higher Education. International Journal of Sustainable Development and Planning, 17(4), 1205-1213
  47. Pietzsch, N., Ribeiro, J.L.D., de Medeiros, J.F. 2017. Benefits, challenges and critical factors of success for Zero Waste: A systematic literature review. Waste management, 67, 324-353
  48. Santos, S.M., Nobre, C., Brito, P., Gonçalves, M. 2023. Brief Overview of Refuse-Derived Fuel Production and Energetic Valorization: Applied Technology and Main Challenges. Sustainability, 15(13), 10342
  49. Sequeira, M., Joanaz de Melo, J. 2020. Energy saving potential in the small business service sector: Case study Telheiras neighborhood, Portugal. Energy Efficiency, 13(4), 551-569
  50. Sharma, P., Sheth, P.N., Mohapatra, B. 2022. Recent progress in refuse derived fuel (RDF) co-processing in cement production: direct firing in kiln/calciner vs process integration of RDF gasification. Waste and Biomass Valorization, 13(11), 4347-4374
  51. Zaman, B., Priyambada, I.B., Budiharjo, M.A., Ramadan, B.S., Puspita, A.S., Cahyati, A.P. Waste Management Strategy as an Effort to Reduce Emissions Due to Open Waste Burning: Demak Regency Case Study. Polish Journal of Environmental Studies
  52. Zorpas, A.A. 2020. Strategy development in the framework of waste management. Science of the total environment, 716, 137088

Last update:

No citation recorded.

Last update: 2025-01-07 09:17:19

No citation recorded.