skip to main content

Thermophilic Digestion of Palm Oil Mill Effluent: Enhancing Biogas Production and Mitigating Greenhouse Gas Emissions

*Dedy Anwar  -  Institut Teknologi Del, Indonesia
Evy Enjelina Simanjuntak  -  Institut Teknologi Del, Indonesia
Ivana Sitepu  -  Institut Teknologi Del, Indonesia
Meiyer Marthen Kinda  -  Institut Teknologi Del, Indonesia
Ellyas Alga Nainggolan  -  Czech University of Sciences Prague, Czech Republic
Yudha Gusti Wibowo orcid scopus publons  -  Institut Teknologi Sumatera, Indonesia

Citation Format:
Abstract

This study investigates the impact of thermophilic anaerobic digestion on biogas production and methane emission reduction from Palm Oil Mill Effluent (POME). Conducted under controlled conditions at 55°C and 65°C, the research aims to optimize biogas yield and reduce Chemical Oxygen Demand (COD) levels. The findings indicate that thermophilic digestion at 65°C significantly enhances biogas production, yielding 1.81 L Biogas per liter of POME over an 8-day period, compared to mesophilic conditions. Furthermore, the study demonstrates substantial COD reduction, supporting a more efficient and environmentally friendly process. By capturing methane emissions and converting them into a renewable energy source, this method aligns with global climate policies and greenhouse gas reduction targets. The integration of thermophilic anaerobic digestion into POME treatment presents a viable solution for the palm oil industry to improve waste management practices and contribute to sustainable development goals. Future research should explore large-scale implementations to maximize the environmental and economic benefits of this technology.

Fulltext View|Download
Keywords: Thermophilic anaerobic digestion; biogas; methane emission mitigation; POME; COD reduction

Article Metrics:

  1. Abba, G. I., 2023. Review of techniques for biohydrogen production from palm oil mill effluent. World Journal of Advanced Engineering Technology and Sciences, 10(1), pp. 98–102
  2. Anwar, D., Panjaitan, P., Situmorang, E. R., Mirnandaulia, M. & Meldha, Z., 2023. Pengurangan kadar karbondioksida (CO2) dalam biogas dengan biofiksasi mikroalga Chlorella vulgaris dan Scenedesmus obliquus. CHEMTAG Journal of Chemical Engineering, 4(2), p. 34
  3. Anyaoha, K. E. & Zhang, L., 2022. Technology-based comparative life cycle assessment for palm oil industry: The case of Nigeria. Environment Development and Sustainability, 25(5), pp. 4575–4595
  4. Arisanti, R., Yusuf, M. & Faizal, M., 2017. Study of the effect of coal quality parameters on gas methane (CH4) emission in coal fire for sustainable environment. Indonesian Journal of Environmental Management and Sustainability, 1(1)
  5. Aromokeye, D. A., Richter-Heitmann, T., Oni, O. E., Kulkarni, A., Yin, X., Kasten, S. & Friedrich, M. W., 2018. Temperature controls crystalline iron oxide utilization by microbial communities in methanic ferruginous marine sediment incubations. Frontiers in Microbiology, 9
  6. Aziz, N. I. H. A. & Hanafiah, M. M., 2017. The potential of palm oil mill effluent (POME) as a renewable energy source. Acta Scientifica Malaysia, 1(2), pp. 9–11
  7. Balan, W. S., Janaun, J. & Siambun, N. J., 2017. Conversion of oil recovered from palm oil mill effluent (POME) into biodiesel using electrolysed carbon catalyst. Matter International Journal of Science and Technology, 3(2), pp. 262–275
  8. Barcelos, E., Rios, S. d. A., Raimundo Nonato Vieira da Cunha, Lopes, R., Motoike, S. Y., Babiychuk, E., Skirycz, A. & Kushnir, S., 2015. Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 6
  9. Chai, A., Wong, Y.-S., Ong, S.-A., Lutpi, N. A., Sam, S.-T. & Kee, W.-C., 2022. Effect of operating temperature in the anaerobic degradation of palm oil mill effluent: Process performance, microbial community, and biokinetic evaluation. Chemical Papers, 76(9), pp. 5399–5410
  10. Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M., 2020. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nature Communications, 11(1)
  11. Das, A., 2023. Advancements and innovations in harnessing microbial processes for enhanced biogas production from waste materials. Agriculture, 13(9), p. 1689
  12. Devitriano, D., Syafiruddin, H. & Wibowo, Y. G., 2023. Inventories of methane emission for enteric and decomposition gases from cattle manure and its mitigation strategies. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 20(1)
  13. Ding, H., 2024. Intermittent heat shocks can reduce methanogenesis and increase generation of longer-chain volatile fatty acids in anaerobic bioreactors. ACS ES&T Engineering, 4(7), pp. 1725–1737
  14. Fristyana, S. L., Irvan, Anwar, D., Harahap, B. A. & Trisakti, B., 2014. Kajian awal pembuatan pupuk cair organik dari effluent pengolahan lanjut limbah cair pabrik kelapa sawit (LCPKS) skala pilot. Jurnal Teknik Kimia USU, 3(1), pp. 32–37
  15. Gandiglio, M., Lanzini, A., Soto, A., Leone, P. & Santarelli, M., 2017. Enhancing the energy efficiency of wastewater treatment plants through co-digestion and fuel cell systems. Frontiers in Environmental Science, 5
  16. Goswami, R., Chattopadhyay, P., Shome, A., Banerjee, S. N., Chakraborty, A. K., Mathew, A. K. & Chaudhury, S., 2016. An overview of physico-chemical mechanisms of biogas production by microbial communities: A step towards sustainable waste management. 3 Biotech, 6(1)
  17. Haque, N., 2018. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. Journal of Animal Science and Technology, 60(1)
  18. Hidayat, N. K., Offermans, A. & Glasbergen, P., 2018. Sustainable palm oil as a public responsibility? On the governance capacity of Indonesian Standard for Sustainable Palm Oil (ISPO). Agriculture and Human Values, 35(1), pp. 223–242
  19. Hosseini, S. E. & Wahid, M. A., 2013. Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 19, pp. 454–462
  20. Hu, Y. & Shen, C., 2024. Thermophilic-mesophilic temperature phase anaerobic co-digestion compared with single phase co-digestion of sewage sludge and food waste. Scientific Reports, 14(1), p. 11967
  21. Huang, C., Zhao, C., Guo, H., Wang, C., Luo, M., Li, H., Chen, X. & Chen, X., 2017. Fast startup of semi-pilot-scale anaerobic digestion of food waste acid hydrolysate for biogas production. Journal of Agricultural and Food Chemistry, 65(51), pp. 11237–11242
  22. Huang, X., Zheng, J., Tian, S., Liu, C., Li, L., Wei, L., Fan, H., Zhang, T., Wang, L., Zhu, G. & Xu, K., 2019. Higher temperatures do not always achieve better antibiotic resistance gene removal in anaerobic digestion of swine manure. Applied and Environmental Microbiology, 85(7)
  23. Innocent Ani, O., Aniokete, T. C. & Agbo, A. O., 2024. Assessing potential of biogas: Harnessing sustainable energy from biomass for renewable solutions (review). Rafidain Journal of Engineering Science, pp. 330–349
  24. Irvan, I., Rahman, M., Anwar, D., Trisakti, B. & Daimon, H., 2019. Production of compost from non-shredded empty fruit bunches mixed with activated liquid organic fertilizer in tower composter. Malaysian Journal of Analytical Science, 23(1)
  25. Irvan, I., Trisakti, B., Wongistani, V. & Tomiuchi, Y., 2012. Methane emission from digestion of palm oil mill effluent (POME) in a thermophilic anaerobic reactor
  26. Jing, Y., Dong, B., Xue, Y. G., Li, N., Gao, P., Zhao, Y. X., Dai, L. L. & Dai, X., 2014. Microbial community dynamics in batch high-solid anaerobic digestion of food waste under mesophilic conditions. Journal of Microbiology and Biotechnology, 24(2), pp. 270–279
  27. Kamalan, H., 2015. Utilizing methane generated in anaerobic leachate treatment as renewable energy. Journal of Clean Energy Technologies, 3(6), pp. 433–437
  28. Kostopoulou, E., 2023. Microbial dynamics in anaerobic digestion: A review of operational and environmental factors affecting microbiome composition and function
  29. Li, C., Liu, H., Hao, J., Zhang, W., Ban, L. & Shi, L., 2016. Influence of temperature on anaerobic co-digestion of dairy manure and edible mushroom cultivation waste
  30. Lin, Q., Vrieze, J. D., Li, J. & Li, X., 2016. Temperature affects microbial abundance, activity and interactions in anaerobic digestion. Bioresource Technology, 209, pp. 228–236
  31. Luo, T., Shen, B., Mei, Z., Hove, A. & Ju, K., 2024. Unlocking the potential of biogas systems for energy production and climate solutions in rural communities. Nature Communications, 15(1), p. 5900
  32. Luo, X., Zhang, X., Long, Z.-W. & Huang, G., 2017. Visualization of Chinese CBM research: A scientometrics review. Sustainability, 9(6), p. 980
  33. Marques, I. P., Gil, L. F. M. & Cara, F. L., 2018. Control of microbial activity in anaerobic digestion by temperature changes: Benefits and challenges. Journal of Environmental Engineering and Science, 13(4), pp. 107–122
  34. Mulyanto, D., 2023. Utilization of palm oil mill effluent as biogas source: Challenges and opportunities. Renewable Energy Journal, 34(6), pp. 523–531
  35. Mutalib, H., Nasrullah, M. & Sa'idi, M., 2022. The impact of palm oil mill effluent on water quality: A case study in North Sumatra. Indonesian Journal of Environmental Management, 13(3), pp. 451–460
  36. Najjar, Y. S. H., 2021. Enhancement of anaerobic digestion of palm oil mill effluent for biogas production: A review of potential additives. Energy Procedia, 176, pp. 90–95
  37. Okoro, O. & Maduako, K., 2020. The future of anaerobic digestion technology: A pathway to cleaner energy production. Journal of Renewable and Sustainable Energy, 12(4), p. 046102
  38. Okoye, F. I., Ogbonna, J. C. & Ogbete, O. B., 2024. Optimizing biogas production from cow dung and poultry waste: A review of process parameters. Waste and Biomass Valorization, 15(2), pp. 429–439
  39. Olanipekun, E. A., 2017. Methane emissions reduction from palm oil mill effluent in Nigeria: A case study. International Journal of Environmental Research, 11(2), pp. 101–112
  40. Onwukwe, C. D. & Odai, G. N., 2023. Methane mitigation potential of bio-waste processing: A review of anaerobic digestion techniques. Journal of Bioprocess Engineering and Biotechnology, 14(5), pp. 147–162
  41. Pratiwi, S. P., Suryani, I. & Kartika, A., 2021. Kajian potensi pengurangan emisi gas rumah kaca pada pengolahan limbah cair pabrik kelapa sawit melalui metode biogas capture. Jurnal Teknik Lingkungan, 22(3), pp. 211–219
  42. Rahim, S. & Alwi, N. M., 2018. Evaluasi pengolahan limbah cair POME pada anaerobic digester di salah satu pabrik kelapa sawit di Riau. Jurnal Penelitian Kelapa Sawit, 26(2), pp. 137–144
  43. Said, M. & Yulianti, L., 2016. Potensi biogas sebagai energi terbarukan di Indonesia: Studi kasus pada industri kelapa sawit. Jurnal Energi Baru dan Terbarukan, 5(1), pp. 45–53
  44. Saleh, S., Ali, H. & Musa, H., 2020. Biogas production from palm oil mill effluent: Process, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 135, p. 110222
  45. Sari, D. W., 2022. Peningkatan produksi biogas dari limbah cair pabrik kelapa sawit menggunakan bioaktivator mikroalga. Jurnal Teknologi Pengolahan Limbah, 9(2), pp. 58–65
  46. Saura, P., Ortega, L., Manrique, E., González, J. & Rivas, A., 2024. Biogas as a renewable energy source: An evaluation of current practices and future trends. Renewable Energy Journal, 25(3), pp. 201–214
  47. Serna, F., Ashtari, R. & Garcia, J., 2019. Effect of operational parameters on anaerobic digestion of palm oil mill effluent: A review. Bioenergy Research, 12(1), pp. 44–56
  48. Shome, B., Roy, A., Das, D., Gupta, S. & Dutta, D., 2020. Recent advances in bio-methanation technology for industrial wastewater treatment: Opportunities and challenges. Journal of Environmental Management, 259, p. 110096
  49. Subash, G., 2023. Palm oil mill effluent treatment for biogas production: Current status and future prospects. International Journal of Environmental Science, 15(4), pp. 154–167
  50. Sutanto, R. H. & Hartanto, N., 2017. Emisi gas rumah kaca pada proses pengolahan limbah cair pabrik kelapa sawit di Sumatera Utara. Jurnal Sumber Daya Alam dan Lingkungan, 8(2), pp. 65–72
  51. Tewari, P., Tripathi, S. & Dubey, R., 2024. Anaerobic co-digestion of municipal solid waste and sewage sludge for improved biogas yield: A review. Journal of Environmental Sciences, 145, pp. 12–24
  52. Wang, C. & Ma, J., 2023. Understanding the impact of temperature fluctuations on microbial communities in biogas production: A comprehensive review. Applied Microbiology and Biotechnology, 107(5), pp. 2067–2080
  53. Yeo, Z. Y. & Wong, S. L., 2022. Palm oil mill effluent (POME) treatment and biogas production: Challenges and future prospects. Environmental Research, 216, p. 114451
  54. Zhang, Y., Chen, X., Wu, Q., Zhao, Y. & Jiang, Y., 2024. Enhancement of biogas production through co-digestion of palm oil mill effluent with food waste. Renewable Energy, 182, pp. 895–903

Last update:

No citation recorded.

Last update: 2024-11-21 02:31:34

No citation recorded.