skip to main content

Sustainable Recovery of SiO₂, Al₂O₃, and MgO from Slag, Aluminum Cans, and Bittern

*Vinda Avri Sukma  -  Universitas Indonesia, Indonesia
Astryd Viandila Dahla  -  Universitas Indonesia, Indonesia
Sudibyo Sudibyo  -  Indonesia Institute of Sciences, Indonesia
Yeni Ria Wulandari  -  Politeknik Negeri Lampung, Indonesia
Adityas Agung Ramdani  -  Yuan Ze University, Taiwan

Citation Format:
Abstract

This study investigates the utilization of solid waste from slag and aluminum cans as sources of valuable raw materials, along with bittern waste for magnesium oxide (MgO)cons production. Slag, a byproduct of industrial combustion in the palm oil industry, and aluminum cans, generated from human consumption in urban areas, were both subjected to leaching processes to recover silica (SiO₂) and alumina (Al₂O₃), respectively. The leaching of slag using 4 M NaOH yielded 85.68% SiO₂, while aluminum cans treated with 4 M HCl produced 85.90% Al₂O₃. Additionally, the study extracted MgO from bittern waste via precipitation, resulting in 76.98% MgO. X-ray fluorescence (XRF) analysis was employed used to determine the composition of the slag, aluminum can waste, and bittern, while X-ray diffraction (XRD) analysis confirmed the crystallinity of the recovered materials. The integration of recycled materials into the production of cordierite ceramics represents an innovative approach to waste valorization, offering potential for the development of advanced materials from industrial and urban waste. This research highlights the potential for valorizing industrial and municipal solid wastes through chemical processes, contributing to sustainable resource recovery and environmental conservation.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Untitled
Subject
Type Other
  Download (3MB)    Indexing metadata
Keywords: Recyling of industrial waste; leaching; SiO₂; Al₂O₃; MgO; sustainable materials

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Abdelkader, A., Hussien, B.M., Fawzy, E.M., Ibrahim, A.A. 2021. Boehmite nanopowder recovered from aluminum cans waste as a potential adsorbent for the treatment of oilfield produced water. Applied Petrochemical Research, 11, 137-146
  2. Aulia, T.B., Afifuddin, M., Zaki, M., Merriza, S. 2018. Shear capacity analysis of high-strength reinforced concrete beams using geopolymer flyash and palm oil blast furnace slag as additives and aggregate substitution. 2018. IOP Publishing. pp. 012199
  3. Bagastyo, A.Y., Sinatria, A.Z., Anggrainy, A.D., Affandi, K.A., Kartika, S.W.T., Nurhayati, E. 2021. Resource recovery and utilization of bittern wastewater from salt production: a review of recovery technologies and their potential applications. Environmental Technology Reviews, 10(1), 295-322
  4. Bui, T.-D., Tseng, J.-W., Tseng, M.-L., Lim, M.K. 2022. Opportunities and challenges for solid waste reuse and recycling in emerging economies: A hybrid analysis. Resources, Conservation and Recycling, 177, 105968
  5. Chinnu, S.N., Minnu, S.N., Bahurudeen, A., Senthilkumar, R. 2022. Influence of palm oil fuel ash in concrete and a systematic comparison with widely accepted fly ash and slag: A step towards sustainable reuse of agro-waste ashes. Cleaner Materials, 5, 100122
  6. Ghulam, N.A., Abbas, M.N., Sachit, D.E. 2020. Preparation of synthetic alumina from aluminium foil waste and investigation of its performance in the removal of RG-19 dye from its aqueous solution. Indian Chemical Engineer, 62(3), 301-313
  7. Gozan, M., Rochwulaningsih, Y., Sulistiyono, S.T., Efendy, M., Intan, N., Harahap, A.F.P., Suhairi, H., Ramadhan, M.Y.A., Hidayat, N., Rahman, S.F. 2021. High-Productivity traditional bali palung salt method for small production fields. Journal of Hunan University Natural Sciences, 48(6)
  8. Gravogl, G., Knoll, C., Welch, J.M., Artner, W., Freiberger, N., Nilica, R., Eitenberger, E., Friedbacher, G., Harasek, M., Werner, A., Hradil, K., Peterlik, H., Weinberger, P., Müller, D., Miletich, R. 2018. Cycle Stability and Hydration Behavior of Magnesium Oxide and Its Dependence on the Precursor-Related Particle Morphology. in: Nanomaterials, Vol. 8
  9. How, L.F., Islam, A., Jaafar, M.S., Taufiq-Yap, Y.H. 2017. Extraction and characterization of γ-alumina from waste aluminium dross. Waste and biomass valorization, 8, 321-327
  10. Kasraee, M., Dehghani, M.H., Hamidi, F., Mubarak, N.M., Karri, R.R., Rajamohan, N., Solangi, N.H. 2023. Adsorptive removal of acid red 18 dye from aqueous solution using hexadecyl-trimethyl ammonium chloride modified nano-pumice. Scientific Reports, 13(1), 13833
  11. Kastiukas, G., Zhou, X., Neyazi, B., Wan, K.T. 2019. Sustainable calcination of magnesium hydroxide for magnesium oxychloride cement production. Journal of Materials in Civil Engineering, 31(7), 04019110
  12. Kaußen, F.M., Friedrich, B. 2016. Methods for alkaline recovery of aluminum from bauxite residue. Journal of Sustainable metallurgy, 2, 353-364
  13. Mustafa, A.M.K., Abdallah, W.R. 2013. Preparation of high purity magnesium oxide from sea bittern residual from NaCl production in Al-Basrah saltern, south IRAQ. Iraqi Bulletin of Geology and Mining, 9(3), 129-146
  14. Palacio, C., Arranz, A. 2001. Oxidation of Iron Deposited on PolycrystallineAluminum Surfaces. The Journal of Physical Chemistry B, 105(44), 10805-10811
  15. Rakesh, C., Harika, A., Chahuan, N., Sharma, N., Zabibah, R.S., Nagpal, A. 2023. Towards a circular economy: challenges and opportunities for recycling and re-manufacturing of materials and components. 2023. EDP Sciences. pp. 01129
  16. Ramakokovhu, M.M., Olubambi, P.A., Mbaya, R.K.K., Mojisola, T., Teffo, M.L. 2020. Mineralogical and leaching characteristics of altered ilmenite beach placer sands. Minerals, 10(11), 1022
  17. Roy, K., Sikdar, D., Pongwisuthiruchte, A., Debnath, S.C., Potiyaraj, P. 2022. Application of waste aluminum cans based nano alumina as reinforcing filler in natural rubber composites. Journal of Material Cycles and Waste Management, 24(4), 1533-1541
  18. Sadek, H.E.H., Zawrah, M.F., Gaber, A.A., Badr, H.A., El-Rafei, A.M., Khattab, R.M. 2021. Utilization of granite sludge for production of cordierite ceramics by direct coagulation casting. Ceramics International, 47(14), 20187-20195
  19. Sayehi, M., Tounsi, H., Garbarino, G., Riani, P., Busca, G. 2020. Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Management, 103, 146-158
  20. Senthil Kumar, M., Vanmathi, M., Senguttuvan, G., Mangalaraja, R.V., Sakthivel, G. 2019. Fly ash constituent-silica and alumina role in the synthesis and characterization of cordierite based ceramics. Silicon, 11, 2599-2611
  21. Shrotri, A., Kobayashi, H., Fukuoka, A. 2017. Catalytic conversion of structural carbohydrates and lignin to chemicals. in: Advances in catalysis, Vol. 60, Elsevier, pp. 59-123
  22. Ulum, R.M., Natalin, Riastuti, R., Mayangsari, W., Prasetyo, A.B., Soedarsono, J.W., Maksum, A. 2023. Pyro-Hydrometallurgy Routes to Recover Silica from Indonesian Ferronickel Slag. in: Recycling, Vol. 8
  23. Wang, T., Meng, D., Zhu, J., Chen, X. 2020. Effects of pelletizing conditions on the structure of rice straw-pellet pyrolysis char. Fuel, 264, 116909
  24. Wulandari, Y.R., Silmi, F.F., Ermaya, D., Sari, N.P., Teguh, D. 2023. Efek Suhu Pirolisis Jerami Padi Untuk Produksi Bio-Oil Menggunakan Reaktor Batch. Jurnal Inovasi Teknik Kimia, 8(3), 167-172
  25. Yin, K., Dou, X., Ren, F., Chan, W.-P., Chang, V.W.-C. 2018. Statistical comparison of leaching behavior of incineration bottom ash using seawater and deionized water: Significant findings based on several leaching methods. Journal of hazardous materials, 344, 635-648

Last update:

No citation recorded.

Last update: 2025-03-26 19:50:06

No citation recorded.