skip to main content

Halal Perspective of Microbial Bioprocess Based-Food Products

*Muhamad Kurniadi  -  Research Unit for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Indonesia
Andri Frediansyah  -  Research Unit for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Indonesia
Open Access Copyright (c) 2017 REAKTOR

Citation Format:
Abstract

Halal food industries are growing rapidly in line with the growing number of World’s Muslim populations. The demand of halal food products by the non-Muslim’s countries have also increase as the increasing of the general public understanding of the strickly processed to achive halal status. Halal food is more than just a food product. It is also protect people from poisons, intoxication and hazardous substances exposure. Microbial bioprocess based-food products is one of alternative to create a variety of good quality and nutritious food products. These products can be fermented food, nutraceutical, whole microbes, probiotic and synbiotic. The presence of several microbes in gastric intestinal tract will also maintain mictobiota of human gut. Microbial agent is also important on producing the aroma, taste and color. It is also important on modifiying of food materials. As Muslim, people should follow the halal dietary laws. Halal food means any process to be a food product that is permissible of lawful by Islamic laws. It is defined in the holy Quran and the Sunnah of Prophet Muhammad. In general, the microbial based-food products are categorized into halal, haram and doubtful. To achieve the lawful status, six of main critical points in the use of microbes in food processing need to be considered. Microbial metabolite such as ethanol is one of crucial factor in order to achieve halal status of food products. In order to achieve the global halal market, several strategies must be applied to microbial bioprocess based-food industries.

Keywords: microbe, halal, industry, bioprocess, critical point


Fulltext View|Download

Article Metrics:

  1. Ablaza, M. J. C., Valerio, A. M., Mamucot, H. F., Bandonill, E. H., & Romero, M. V. (2008). Utilization of pure molds and yeast in the preparation of tapuy (rice wine). Philippine Journal of Crop Science (Philippines)
  2. Addis, E., Fleet, G. H., Cox, J. M., Kolak, D., & Leung, T. (2001). The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. International journal of food microbiology, 69(1), 25-36
  3. Awan, J.A. (1998). Islamic Food Laws. I. Phylosphy of the prohibition of unlawful foyods, Sci. Technol Islam, World, 6(3):151
  4. Aidoo, K. E., Nout, M. R., & Sarkar, P. K. (2006). Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS yeast research, 6(1), 30-39
  5. Bae, K., Shin, K. S., Ryu, H., Kwon, C., & Sohn, H. (2007). Identification and fermentation characteristics of lactic acid bacteria isolated from the fermentation broth of Korean traditional liquor, Andong-Soju. Korean Journal of Microbiology and Biotechnology, 35(4), 310
  6. Banerjee, D., Mondal, K. C., & Pati, B. R. (2001). Production and characterization of extracellular and intracellular tannase from newly isolated Aspergillus aculeatus DBF 9. Journal of Basic Microbiology, 41(6), 313-318
  7. Barus, T., & Wijaya, L. N. (2011). Mikrobiota Dominan dan Perannya dalam Cita Rasa Tape Singkong. Journal of Biota, 16(2)
  8. Berraud, C. (2000). Production of highly concentrated vinegar in fed-batch culture. Biotechnology Letters, 22(6), 451-454
  9. Bremus, C., Herrmann, U., Bringer-Meyer, S., & Sahm, H. (2006). The use of microorganisms in L-ascorbic acid production. Journal of biotechnology, 124(1), 196-205
  10. Besancon, X., Smet, C., Chabalier, C., Rivemale, M., Reverbel, J. P., Ratomahenina, R., & Galzy, P. (1992). Study of surface yeast flora of Roquefort cheese. International journal of food microbiology, 17(1), 9-18
  11. Budak, N. H., Aykin, E., Seydim, A. C., Greene, A. K., & Guzel‐Seydim, Z. B. (2014). Functional properties of vinegar. Journal of food science, 79(5), R757-R764
  12. Claus, A., Schreiter, P., Weber, A., Graeff, S., Herrmann, W., Claupein, W., ... & Carle, R. (2006). Influence of agronomic factors and extraction rate on the acrylamide contents in yeast-leavened breads. Journal of agricultural and food chemistry, 54(23), 8968-8976
  13. Collado, M. C., Surono, I., Meriluoto, J., & Salminen, S. (2007). Indigenous Dadih Lactic Acid Bacteria: Cell‐Surface Properties and Interactions with Pathogens. Journal of food science, 72(3), M89-M93
  14. Dmytruk, K. V., Yatsyshyn, V. Y., Sybirna, N. O., Fedorovych, D. V., & Sibirny, A. A. (2011). Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metabolic engineering, 13(1), 82-88
  15. De Angelis, M., Siragusa, S., Berloco, M., Caputo, L., Settanni, L., Alfonsi, G., ... & Gobbetti, M. (2006). Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Research in Microbiology, 157(8), 792-801
  16. De Vuyst, L., & Vandamme, E. J. (1994). Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: properties, biosynthesis, fermentation and applications. In Bacteriocins of lactic acid bacteria (pp. 151-221). Springer US
  17. Dung, N. T. P. (2013). Vietnamese rice-based alcoholic beverages. International Food Research Journal, 20(3), 1035-1041
  18. Elsayed, E. A., Farid, M. A. F., & El Enshasy, H. A. (2013). Improvement in natamycin production by Streptomyces natalensis with the addition of short-chain carboxylic acids. Process Biochemistry, 48(12), 1831-1838
  19. Engel, C. A. R., Straathof, A. J., Zijlmans, T. W., van Gulik, W. M., & van der Wielen, L. A. (2008). Fumaric acid production by fermentation. Applied microbiology and biotechnology, 78(3), 379-389
  20. Farid, M. A., El‐Enshasy, H. A., & Noor El‐Deen, A. M. (2002). Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomycescerevisiae at different agitation speeds. Journal of basic microbiology, 42(3), 162-171
  21. Feller, G., Narinx, E., Arpigny, J. L., Aittaleb, M., Baise, E., Genicot, S., & Gerday, C. (1996). Enzymes from psychrophilic organisms. FEMS Microbiology Reviews, 18(2-3), 189-202
  22. Farnworth, E. R., Mainville, I., Desjardins, M. P., Gardner, N., Fliss, I., & Champagne, C. (2007). Growth of probiotic bacteria and bifidobacteria in a soy yogurt formulation. International journal of food microbiology, 116(1), 174-181
  23. Ferreira, V., López, R., & Cacho, J. F. (2000). Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture, 80(11), 1659-1667
  24. Gala, E., Landi, S., Solieri, L., Nocetti, M., Pulvirenti, A., & Giudici, P. (2008). Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese. International journal of food microbiology, 125(3), 347-351
  25. Gamble, H.R. (1997). Parasites associated with pork and pork products. Rev. sci. tech. Off. Int. Epiz, 16(2), 496-506
  26. Ganguly, S., & Banik, A. K. (2010). Induced mutation and selection of High Yielding Strain of Micrococcus glutamicus for glutamic acid production. Journal of the Indian Chemical Society, 87(6), 717-721
  27. Garneau, S., Martin, N. I., & Vederas, J. C. (2002). Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie, 84(5), 577-592
  28. Gbassi, G. K., Vandamme, T., Ennahar, S., & Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology, 129(1), 103-105
  29. Gill, J. S., & Donaghy, M. (2004). Variation in the alcohol content of a ‘drink’of wine and spirit poured by a sample of the Scottish population. Health Education Research, 19(5), 485-491
  30. Gobbetti, M., Burzigotti, R., Smacchi, E., Corsetti, A., & De Angelis, M. (1997). Microbiology and biochemistry of Gorgonzola cheese during ripening. International Dairy Journal, 7(8), 519-529
  31. Gong, C. H. E. N. (2009). Quality evaluation and standard discussion of Chinese pickle [J]. Science and Technology of Food Industry, 2, 107
  32. Goupil-Feuillerat, N., Corthier, G., Godon, J. J., Ehrlich, S. D., & Renault, P. (2000). Transcriptional and Translational Regulation of α-Acetolactate Decarboxylase of Lactococcus lactissubsp. lactis. Journal of bacteriology, 182(19), 5399-5408
  33. Green Iii, F., & Clausen, C. A. (2003). Copper tolerance of brown-rot fungi: time course of oxalic acid production. International biodeterioration & biodegradation, 51(2), 145-149
  34. Gül, H., Özçelik, S., Sağdıç, O., & Certel, M. (2005). Sourdough bread production with lactobacilli and S. cerevisiae isolated from sourdoughs. Process Biochemistry, 40(2), 691-697
  35. Hamilton, W. L., & Wenlock, R. Antimicrobial resistance: A major threat to public health. Access 19 June 2016. http://www.cambridgemedicine.org/hamilton2016
  36. Harris, R. A., & Bruno, P. A. T. R. I. C. K. (1985). Effects of ethanol and other intoxicant-anesthetics on voltage-dependent sodium channels of brain synaptosomes. Journal of Pharmacology and Experimental Therapeutics, 232(2), 401-406
  37. Hermann, T. (2003). Industrial production of amino acids by coryneform bacteria. Journal of biotechnology, 104(1), 155-172
  38. Holzapfel, W. H., & Taljaard, J. L. (2004). Industrialization of mageu fermentation in South Africa. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER-, 363-405
  39. Iqbal, Z., & Sze, P. Y. (1994). Correlation between [125 I] calmodulin binding and lipid fluidity in synaptic plasma membranes: effects of ethanol and other short-chain alcohols. Molecular brain research, 27(2), 333-336
  40. Isobe, K., Inoue, N., Takamatsu, Y., Kamada, K., & Wakao, N. (2006). Production of catalase by fungi growing at low pH and high temperature. Journal of bioscience and bioengineering, 101(1), 73-76
  41. Iyer, C., Phillips, M., & Kailasapathy, K. (2005). Release studies of Lactobacillus casei strain Shirota from chitosan‐coated alginate‐starch microcapsules in ex vivo porcine gastrointestinal contents. Letters in applied microbiology, 41(6), 493-497
  42. Kanlayakrit, W., & Maweang, M. (2006). Production of seasoning “Mirin” from Thai rice by fermentation. Kasetsart J, 40, 39-46
  43. Kantyka, T., Shaw, L.N. and Potempa, J., 2011. Papain-like proteases of Staphylococcus aureus. In Cysteine Proteases of Pathogenic Organisms (pp. 1-14). Springer US
  44. Kataoka, S. (2005). Functional effects of Japanese style fermented soy sauce (shoyu) and its components. Journal of bioscience and bioengineering, 100(3), 227-234
  45. Kinegam, S., Tanasupawat, S., & Akaracharanya, A. (2007). Screening and identification of xylanase-producing bacteria from Thai soils. The Journal of general and applied microbiology, 53(1), 57-65
  46. Kobayashi, T., Kajiwara, M., Wahyuni, M., Kitakado, T., Hamada-Sato, N., Imada, C., & Watanabe, E. (2003). Isolation and characterization of halophilic lactic acid bacteria isolated from" terasi" shrimp paste: A traditional fermented seafood product in Indonesia. The Journal of general and applied microbiology, 49(5), 279-286
  47. Kollöffel, B., Meile, L., & Teuber, M. (1999). Analysis of brevibacteria on the surface of Gruyère cheese detected by in situ hybridization and by colony hybridization. Letters in applied microbiology, 29(5), 317-322
  48. Kostinek, M., Specht, I., Edward, V. A., Schillinger, U., Hertel, C., Holzapfel, W. H., & Franz, C. M. (2005). Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Systematic and Applied Microbiology, 28(6), 527-540
  49. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21(4), 377-397
  50. Kubo, I., Masuoka, N., Joung Ha, T., Shimizu, K., & Nihei, K. I. (2010)
  51. Multifunctional antioxidant activities of alkyl gallates. The Open Bioactive Compounds Journal, 3(1)
  52. Lazzi, C., Rossetti, L., Zago, M., Neviani, E., & Giraffa, G. (2004). Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity‐PCR. Journal of applied microbiology, 96(3), 481-490
  53. Lee, J. Y., Kim, C. J., & Kunz, B. (2006). Identification of lactic acid bacteria isolated from kimchi and studies on their suitability for application as starter culture in the production of fermented sausages. Meat science, 72(3), 437-445
  54. Lefeber, T., Gobert, W., Vrancken, G., Camu, N., & De Vuyst, L. (2011). Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food microbiology, 28(3), 457-464
  55. Lefier, D., Lamprell, H., & Mazerolles, G. (2000). Evolution of Lactococcus strains during ripening in Brie cheese using Fourier transform infrared spectroscopy. Le Lait, 80(2), 247-254
  56. Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67-78
  57. Lopitz-Otsoa, F., Rementeria, A. Li-Jun, Y., Li-Te, L., Zai-Gui, L., Tatsumi, E., & Saito, M. (2004). Changes in isoflavone contents and composition of sufu (fermented tofu) during manufacturing. Food Chemistry, 87(4), 587-592
  58. Lopitz-Otsoa, F., Rementeria, A., Elguezabal, N., & Garaizar, J. (2006). Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev Iberoam Micol, 23(2), 67-74
  59. Lotfy, W. A., Ghanem, K. M., & El-Helow, E. R. (2007). Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Bioresource technology, 98(18), 3470-3477
  60. Luangkhlayphoa, A., Pattaragulwanita, K., Leepipatpiboonb, N., & Yompakdeea, C. (2014). Development of a defined starter culture mixture for the fermentation of sato, a Thai rice-based alcoholic beverage. SCIENCEASIA, 40(2), 125-134
  61. Luh, B. S. (1995). Industrial production of soy sauce. Journal of industrial Microbiology, 14(6), 467-471
  62. Mashimo, P. A., Yamamoto, Y., Nakamura, M., & Slots, J. (1983). Selective recovery of oral Capnocytophaga spp. with sheep blood agar containing bacitracin and polymyxin B. Journal of clinical microbiology, 17(2), 187-191
  63. Maxwell, F. J., Duncan, S. H., Hold, G., & Stewart, C. S. (2004). Isolation, growth on prebiotics and probiotic potential of novel bifidobacteria from pigs. Anaerobe, 10(1), 33-39
  64. McIntosh, C. & Chick, J. (2004). Alcohol and nervous system. J Neural Psychiatry. 75
  65. Mokarram, R. R., Mortazavi, S. A., Najafi, M. H., & Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), 1040-1045
  66. Morea, M., Baruzzi, F., & Cocconcelli, P. S. (1999). Molecular and physiological characterization of dominant bacterial populations in traditional Mozzarella cheese processing. Journal of Applied Microbiology, 87(4), 574-582
  67. Newton, G. L., Rawat, M Nakajima, N., Nozaki, N., Ishihara, K., Ishikawa, A., & Tsuji, H. (2005). Analysis of isoflavone content in tempeh, a fermented soybean, and preparation of a new isoflavone-enriched tempeh. Journal of bioscience and bioengineering, 100(6), 685-687
  68. Newton, G. L., Rawat, M., La Clair, J. J., Jothivasan, V. K., Budiarto, T., Hamilton, C. J., ... & Fahey, R. C. (2009). Bacillithiol is an antioxidant thiol produced in Bacilli. Nature chemical biology, 5(9), 625-627
  69. Ng, T. B., & Arora, D. K. (2004). Fungi and fermented food. Fungal biotechnology in agricultural, food, and environmental applications, 223-231
  70. Omar, M. M., Guirguis, A. H., El-Abbassy, M. Z., & Ismail, H. A. (2014). Chemical composition and microbiological quality of limburger like cheese made from different types of milk. Egyptian Journal of Dairy Science, 42(1), 61-70
  71. Onda, T., Yanagida, F., Uchimura, T., Tsuji, M., Ogino, S., Shinohara, T., & Yokotsuka, K. (2003). Analysis of lactic acid bacterial flora during Miso fermentation. Food Science and Technology Research, 9(1), 17-24
  72. Park, J. S., Song, S. H., Choi, J. B., Kim, Y. S., Kwon, S. H., & Park, Y. S. (2014). Physicochemical properties of Korean rice wine (Makgeolli) fermented using yeasts isolated from Korean traditional nuruk, a starter culture. Food Science and Biotechnology, 23(5), 1577-1585
  73. Pochanavanich, P., & Suntornsuk, W. (2002). Fungal chitosan production and its characterization. Letters in applied microbiology, 35(1), 17-21
  74. Pappenberger, G., & Hohmann, H. P. (2013). Industrial production of L-ascorbic acid (Vitamin C) and D-isoascorbic acid. In Biotechnology of Food and Feed Additives (pp. 143-188). Springer Berlin Heidelberg
  75. Rodriguez, E., Arques, J. L., Rodriguez, R., Nunez, M., & Medina, M. (2003). Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Letters in applied microbiology, 37(3), 259-263
  76. Röling, W. F., Apriyantono, A., & Van Verseveld, H. W. (1996). Comparison between traditional and industrial soy sauce (kecap) fermentation in Indonesia. Journal of fermentation and bioengineering, 81(3), 275-278
  77. Rosenberg, M., & Miková, H. (1999). Production of L-tartaric acid by immobilized bacterial cells Nocardia tartaricans. Biotechnology letters, 21(6), 491-495
  78. Sastraatmadja, D. D., Tomita, F., & Kasai, T. (2002). Production of high-quality oncom, a traditional Indonesian fermented food, by the inoculation with selected mold strains in the form of pure culture and solid inoculum. Journal of the Graduate School of Agriculture-Hokkaido University (Japan)
  79. Schubert, K., Ludwig, W., Springer, N., Kroppenstedt, R. M., Accolas, J. P., & Fiedler, F. (1996). Two Coryneform Bacteria Isolated from the Surface of French Gruyère and Beaufort Cheeses Are New Species of the Genus Brachybacterium: Brachybacterium alimentarium sp. nov. and Brachybacterium tyrofermentans sp. nov. r†. International Journal of Systematic and Evolutionary Microbiology, 46(1), 81-87
  80. Siebenhandl, LN Lestario, D. Trimmel, E. Berghofer, S. (2001). Studies on tape ketan–an Indonesian fermented rice food. International journal of food sciences and nutrition, 52(4), 347-357
  81. Silva, M., Jacobus, N. V., Deneke, C., & Gorbach, S. L. (1987). Antimicrobial substance from a human Lactobacillus strain. Antimicrobial agents and chemotherapy, 31(8), 1231-1233
  82. Sirsantimethakom, L., Laopaiboon, L., Danvirutai, P., & Laopaiboon, P. (2008). Volatile compounds of a traditional Thai rice wine. Biotechnology, 7(3), 505-513
  83. Steinkraus, K. H. (2002). Fermentations in world food processing. Comprehensive Reviews in Food Science and Food Safety, 1(1), 23-32
  84. Sun, Y., & Furusaki, S. (1990). Continuous production of acetic acid using immobilized Acetobacter aceti in a three-phase fluidized bed bioreactor. Journal of Fermentation and Bioengineering, 69(2), 102-110
  85. Suzuki, K., Asano, S., Iijima, K., & Kitamoto, K. (2008). Sake and beer spoilage lactic acid bacteria—a review. Journal of the Institute of Brewing, 114(3), 209-223
  86. Tanasupawat, S., Namwong, S., Kudo, T., & Itoh, T. (2007). Piscibacillus salipiscarius gen. nov., sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand. International journal of systematic and evolutionary microbiology, 57(7), 1413-1417
  87. Thanh, V. N., & Tuan, D. A. (2008). Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE. International journal of food microbiology, 128(2), 268-273
  88. Visessanguan, W., Benjakul, S., Riebroy, S., Yarchai, M., & Tapingkae, W. (2006). Changes in lipid composition and fatty acid profile of Nham, a Thai fermented pork sausage, during fermentation. Food chemistry, 94(4), 580-588
  89. Vojnov, A. A., Slater, H., Daniels, M. J., & Dow, J. M. (2001). Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Molecular plant-microbe interactions, 14(6), 768-774
  90. Watanabe, T., Aoki, T., Honda, H., Taya, M. and Kobayashi, T., 1990. Production of ethanol in repeated-batch fermentation with membrane-type bioreactor. Journal of fermentation and bioengineering, 69(1), pp.33-38
  91. Wilkinson, M. G., Guinee, T. P., O'Callaghan, D. M., & Fox, P. F. (1994). Autolysis and proteolysis in different strains of starter bacteria during Cheddar cheese ripening. Journal of Dairy Research, 61(02), 249-262
  92. Wulansari D., WahyuntariI, B., Trismillah, T. and Nurhasanah, A., (2012). The Effect of Growth Medium pH towards Trypsin-Like Activity Produced by Lactic Acid Bacteria. Microbiology Indonesia, 6(2), p.49
  93. Xiong, T., Guan, Q., Song, S., Hao, M., & Xie, M. (2012). Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control, 26(1), 178-181
  94. Yokoyma, S., Hiramatsu, J. I., & Hayakawa, K. (2002). Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of bioscience and bioengineering, 93(1), 95-97
  95. Yongsawatdigul, J., Rodtong, S., & Raksakulthai, N. (2007). Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. Journal of food science, 72(9), M382-M390
  96. Yu, Z. T., Yao, W., & Zhu, W. Y. (2008). Isolation and identification of equol-producing bacterial strains from cultures of pig faeces. FEMS microbiology letters, 282(1), 73-80
  97. Yun, J. H., Lee, K. B., Sung, Y. K., Kim, E. B., Lee, H. G., & Choi, Y. J. (2009). Isolation and characterization of potential probiotic lactobacilli from pig feces. Journal of basic microbiology, 49(2), 220-226
  98. Zheng, X. W., & Han, B. Z. (2016). Baijiu (白酒), Chinese liquor: History, classification and manufacture. Journal of Ethnic Foods, 3(1), 19-25
  99. Zhu, Y., Li, J., Tan, M., Liu, L., Jiang, L., Sun, J., ... & Chen, J. (2010). Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresource technology, 101(22), 8902-8906

Last update:

  1. Predicting Halal Critical Control Points of Microbial-based Ingredients: A Self-Assessment for MSMEs

    Adhatus S. Ahmadiyah, Fara D.M. Kinanggit, Kelly R. Sungkono. 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 2022. doi: 10.1109/ISRITI56927.2022.10053043
  2. Profil Bahan Perisa Kritis Halal dalam Peraturan BPOM No. 13/2020

    Sarah Fathia, Tjahja Muhandri, Nugraha Edhi Suyatma. Jurnal Mutu Pangan : Indonesian Journal of Food Quality, 9 (2), 2022. doi: 10.29244/jmpi.2022.9.2.92
  3. Good agricultural practices and its compatibility with Halal standards

    Jawad Alzeer, Ulrike Rieder, Khaled Abou Hadeed. Trends in Food Science & Technology, 102 , 2020. doi: 10.1016/j.tifs.2020.02.025
  4. Effective Microorganisms as Halal-Based Sources for Biofertilizer Production and Some Socio-Economic Insights: A Review

    Chee Kong Yap, Khalid Awadh Al-Mutairi. Foods, 12 (8), 2023. doi: 10.3390/foods12081702
  5. The Producing of Fermented Milk as an Application of Alternative Halal Culture Medium for the Growth of Lactobacillus plantarum TMW 1.1623 and Streptococcus thermophilus

    E Riftyan, E Rossi, R Efendi, Z Marcellina. IOP Conference Series: Earth and Environmental Science, 1059 (1), 2022. doi: 10.1088/1755-1315/1059/1/012052
  6. Principles of halal-compliant fermentations: Microbial alternatives for the halal food industry

    Ercan Karahalil. Trends in Food Science & Technology, 98 , 2020. doi: 10.1016/j.tifs.2020.01.031

Last update: 2024-10-08 09:11:51

  1. Good agricultural practices and its compatibility with Halal standards

    Jawad Alzeer, Ulrike Rieder, Khaled Abou Hadeed. Trends in Food Science & Technology, 102 , 2020. doi: 10.1016/j.tifs.2020.02.025
  2. Principles of halal-compliant fermentations: Microbial alternatives for the halal food industry

    Ercan Karahalil. Trends in Food Science & Technology, 98 , 2020. doi: 10.1016/j.tifs.2020.01.031