BibTex Citation Data :
@article{Reaktor13437, author = {S Syaiful and S Sobri}, title = {Efek Aditif LPM dan HPM Terhadap Konsumsi Bahan Bakar Spesifik (Brake Specific Fuel Consumption (BSFC)) dan Emisi Jelaga Mesin Diesel Injeksi Langsung Berbahan Bakar Campuran Solar dan Jatropha dengan Cold EGR (Exhaust Gas Recirculation)}, journal = {Reaktor}, volume = {16}, number = {3}, year = {2017}, keywords = {LPM dan HPM, BSFC, emisi jelaga, jatropha, cold EGR dan mesin diesel}, abstract = { Diesel engines have been widely used as a mode of public transport and private vehicles because of several advantages compared to gasoline engines including greater power, fuel economy, high reliability and durability of the engine and lower CO emissions. However, diesel engines release more NO x and soot emissions into the atmosphere. This is a serious problem with the strict regulations regarding exhaust emissions. Besides problems of depletion of fossil fuel reserves require various parties to seek alternative fuels derived diesel fuel. Therefore, this work is intended to reduce soot emissions by adding LPM (low purity methanol) or wet methanol and HPM (high purity methanol) into a mixture of jatropha and diesel fuels. From this research, it is also desirable to observe the effect of methanol additive to the specific fuel consumption. Experiment method was conducted to obtain the correlation between the percentage of methanol to a brake specific fuel consumption (BSFC) and soot emissions. Methanol (LPM and HPM) was varied in the range of 5 to 15% by volume. Jatropha is in the range of 10% to 30%. The rate of EGR (exhaust gas recirculation) expressed by OEV (opening EGR valve) was varied at the opening of 0 to 100%. Engine load was varied from 25 to 100% at intervals of 25%. The engine speed was kept constant of 2000 rpm. The results show that the use of fuel mixture increases evenly BSFC of 5.2% and soot emissions of 65%. Keywords: LPM and HPM, BSFC, soot emissions, jatropha, cold EGR and diesel engine Abstrak Mesin diesel telah banyak digunakan sebagai moda transportasi umum dan kendaraan pribadi oleh karena beberapa kelebihannya dibandingkan dengan mesin bensin diantaranya daya yang lebih besar, hemat bahan bakar, kehandalan dan ketahanan mesin yang tinggi (high realibility and durability), dan emisi CO yang lebih rendah. Akan tetapi mesin diesel melepaskan lebih banyak emisi NO x dan jelaga ke atmosfir. Hal ini menjadi permasalahan serius dengan semakin ketatnya regulasi menyangkut emisi gas buang. Selain itu permasalahan menipisnya cadangan bahan bakar fosil menuntut berbagai pihak untuk mencari bahan bakar alternatif pengganti solar. Oleh karena itu, penelitian ini bermaksud untuk mereduksi emisi jelaga dengan menambahkan LPM ( low purity methanol ) atau wet methanol dan HPM ( high purity methanol )kedalam campuran bahan bakar jatropha dan solar. Dari penelitian ini juga diinginkan untuk mengamati pengaruh aditif metanol terhadap konsumsi bahan bakar spesifik. Metode eksperimen dilakukan untuk mendapatkan keterkaitan antara prosentase metanol terhadap brake specific fuel consumption (BSFC)dan emisi jelaga. Metanol (LPM dan HPM) divariasikan pada rentang 5% sampai 15%. Jatropha adalah pada rentang 10% sampai 30%. Laju EGR ( exhaust gas recirculation ) yang dinyatakan oleh OEV ( opening EGR valve ) divariasikan pada bukaan 0% sampai 100%. Beban mesin divariasikan dari 25% sampai 100% dengan interval 25%. Putaran mesin dipertahankan konstan 2000 rpm. Hasil-hasil penelitian menunjukkan bahwa penggunaan bahan bakar campuran rata-rata meningkatkan BSFC 5,2% dan menurunkan emisi jelaga sampai 65%. }, issn = {2407-5973}, pages = {116--122} doi = {10.14710/reaktor.16.3.116-122}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/13437} }
Refworks Citation Data :
Diesel engines have been widely used as a mode of public transport and private vehicles because of several advantages compared to gasoline engines including greater power, fuel economy, high reliability and durability of the engine and lower CO emissions. However, diesel engines release more NOx and soot emissions into the atmosphere. This is a serious problem with the strict regulations regarding exhaust emissions. Besides problems of depletion of fossil fuel reserves require various parties to seek alternative fuels derived diesel fuel. Therefore, this work is intended to reduce soot emissions by adding LPM (low purity methanol) or wet methanol and HPM (high purity methanol) into a mixture of jatropha and diesel fuels. From this research, it is also desirable to observe the effect of methanol additive to the specific fuel consumption. Experiment method was conducted to obtain the correlation between the percentage of methanol to a brake specific fuel consumption (BSFC) and soot emissions. Methanol (LPM and HPM) was varied in the range of 5 to 15% by volume. Jatropha is in the range of 10% to 30%. The rate of EGR (exhaust gas recirculation) expressed by OEV (opening EGR valve) was varied at the opening of 0 to 100%. Engine load was varied from 25 to 100% at intervals of 25%. The engine speed was kept constant of 2000 rpm. The results show that the use of fuel mixture increases evenly BSFC of 5.2% and soot emissions of 65%.
Keywords: LPM and HPM, BSFC, soot emissions, jatropha, cold EGR and diesel engine
Abstrak
Article Metrics:
Last update:
Last update: 2025-01-20 09:10:53
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University