BibTex Citation Data :
@article{Reaktor14998, author = {yunardi yunardi}, title = {Biological Treatment Of Simulated Humic Acid Wasre Water In A Laboratory Scale Aerobic Reactor}, journal = {Reaktor}, volume = {7}, number = {1}, year = {2017}, keywords = {activated sludge, ammonium nitrogen, fill and draw, glucose, humic acid, wastewater}, abstract = { A laboratory study was conducted to determine the feasibility of activated sludge reactor for treating humic acid waste waterand examine the effect of the presence of glucose as the second carbon source on treatment performance. Activated sludge obtained from a waste water treatment plant treating domestic wastewater was used as a seed for reactors. Synthetic wastewater containing humid acid as the sole carbon source and glucose as the second carbon source were used as feeds for the reactors operated in a fill-and-draw mode. The result showed tht the presence of glucose in the wastewater enhanced the production of higher MLSS (mixed liquor suspended solids) than that without of glucose. The TOC (Total Organic Carbon) concentration in both reactors fluctuated greatly until the end of the experiment due to inability of keeping the input TOC at desired level. However the decrease in TOC suggested that there are some microorganisms capable of degrading the humic acid. Addition of glucose to the simulated humic acid wastewater improved the capability of microbes in degrading the acids. Most ammonium nitrogen in the wastewater was converted to nitrate nitrogen. Although the performance was lower compared to that of conventional system, activated sludge process was capable of degrading wastewater containing humic acids. Keywords : activated sludge, ammonium nitrogen, fill and draw, glucose, humic acid, wastewater }, issn = {2407-5973}, pages = {33--36} doi = {10.14710/reaktor.7.1.33-36}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/14998} }
Refworks Citation Data :
A laboratory study was conducted to determine the feasibility of activated sludge reactor for treating humic acid waste waterand examine the effect of the presence of glucose as the second carbon source on treatment performance. Activated sludge obtained from a waste water treatment plant treating domestic wastewater was used as a seed for reactors. Synthetic wastewater containing humid acid as the sole carbon source and glucose as the second carbon source were used as feeds for the reactors operated in a fill-and-draw mode. The result showed tht the presence of glucose in the wastewater enhanced the production of higher MLSS (mixed liquor suspended solids) than that without of glucose. The TOC (Total Organic Carbon) concentration in both reactors fluctuated greatly until the end of the experiment due to inability of keeping the input TOC at desired level. However the decrease in TOC suggested that there are some microorganisms capable of degrading the humic acid. Addition of glucose to the simulated humic acid wastewater improved the capability of microbes in degrading the acids. Most ammonium nitrogen in the wastewater was converted to nitrate nitrogen. Although the performance was lower compared to that of conventional system, activated sludge process was capable of degrading wastewater containing humic acids.
Keywords : activated sludge, ammonium nitrogen, fill and draw, glucose, humic acid, wastewater
Article Metrics:
Last update:
Last update: 2025-02-01 12:02:59
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University