BibTex Citation Data :
@article{Reaktor33469, author = {Aji Prasetyaningrum and Al Farrel A. Raemas and Nur Rokhati and Bakti Jos}, title = {Application of Glyoxal Acrylamide Modified Κ-Carrageenan as A Superabsorbent Polymer in Drug Delivery System}, journal = {Reaktor}, volume = {20}, number = {3}, year = {2020}, keywords = {}, abstract = { The hydrogel is superabsorbent polymers (SAP) that are biodegradable and can be obtained from polysaccharides, lipids, and proteins. Polysaccharides include cellulose, starch and their derivatives, seaweed extracts such as carrageenan, alginate, pectin, and chitosan. Carrageenan is the result of the extraction of red seaweed sap with an alkaline solution. The main objective of this study was to simultaneously increase the strength and properties of κ-carrageenan SAP film with the addition of glyoxal and acrylamide as crosslinkers. The addition of acrylamide (variated from 1 to 7 % b/v) into the k-Carrageenan based SAP hydrogel compound and the presence of glyoxal as crosslink agent (variated from 0 to 1,0 % v/v). The physical properties of the SAP films were analyze using swelling degree and tensile strength. The structural and morphological properties of composite films were analyzed using Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). In addition, the effect of pHs on the releasing drug Poly(vinylpyrrolidone)-Iodine was investigated. This research shows that the addition of acrylamide and glyoxal can improve the physical properties of the modified κ-carrageenan film. Characterization using SEM shows that the addition of glyoxal causes the formation of tissue fibers in SAP. FTIR spectra indicated the formation of cross bonds in modified SAP film at 3294.42 cm -1 (carboxylic acid). The treatment under alkaline conditions will increase drug release ability. Keywords: κ - carrageenan; hydrogels; acrylamide ; glyoxal ; drug delivery }, issn = {2407-5973}, pages = {150--158} doi = {10.14710/reaktor.20.3.150-158}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/33469} }
Refworks Citation Data :
The hydrogel is superabsorbent polymers (SAP) that are biodegradable and can be obtained from polysaccharides, lipids, and proteins. Polysaccharides include cellulose, starch and their derivatives, seaweed extracts such as carrageenan, alginate, pectin, and chitosan. Carrageenan is the result of the extraction of red seaweed sap with an alkaline solution. The main objective of this study was to simultaneously increase the strength and properties of κ-carrageenan SAP film with the addition of glyoxal and acrylamide as crosslinkers. The addition of acrylamide (variated from 1 to 7 % b/v) into the k-Carrageenan based SAP hydrogel compound and the presence of glyoxal as crosslink agent (variated from 0 to 1,0 % v/v). The physical properties of the SAP films were analyze using swelling degree and tensile strength. The structural and morphological properties of composite films were analyzed using Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). In addition, the effect of pHs on the releasing drug Poly(vinylpyrrolidone)-Iodine was investigated. This research shows that the addition of acrylamide and glyoxal can improve the physical properties of the modified κ-carrageenan film. Characterization using SEM shows that the addition of glyoxal causes the formation of tissue fibers in SAP. FTIR spectra indicated the formation of cross bonds in modified SAP film at 3294.42 cm-1 (carboxylic acid). The treatment under alkaline conditions will increase drug release ability.
Article Metrics:
Last update:
Last update: 2025-01-30 17:44:30
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University