CELL DISTRUPTION MIKROALGA SECARA ENZIMATIS DENGAN SELLULASE

*Padil Padil -  Jurusan Teknik Kimia, Fakultas Teknik Universitas Riau, Indonesia
Siti Syamsiah -  Jurusan Teknik Kimia Universitas Gadjah Mada, Indonesia
Muslikhin Hidayat -  Jurusan Teknik Kimia Universitas Gadjah Mada, Indonesia
Rina Sri Kasiamdari -  Fakultas Biologi Universitas Gadjah Mada, Indonesia
Received: 27 Nov 2015; Published: 7 Jan 2016.
Open Access
Abstract

ENZYMATIC CELL DISRUPTION OF MICROALGAE USING CELLULASE. Micro-algae is one source of potential alternative energy of third generation to be developed as bioethanol raw material. The starch content trapped in Micro-algae cell walls causing the need of cell distruption to release and convert starch into simple glucose before the fermentation process. This study aims to open up the cell walls of Micro-algae and to explore the effect of sellulase enzymes from Aspergillus niger as Micro-algae cell distruption strategy as well as the optimization of process parameters, i.e the concentration of enzyme, temperature, pH, and time which produce the highest glucose yield. The results showed that the highest glucose yield was 82.44% (w/w) obtained at an enzyme concentration of 30% (w/w), temperature 45oC, pH of 4.5 at 40 minutes, the amount of Micro-algae as 0.5 g/L. In general, cell distruption method using sellulase enzyme was proven to be a promising option to open the cell walls of Micro-algae and convert cellulose into simple glucose simultaneously in producing bioethanol.

 

Keywords: bioethanol; cellulose; cell distruption; enzymatic; micro-algae; starch

Abstrak

Mikroalga merupakan salah satu sumber energi alternatif generasi ketiga yang potensial untuk dikembangkan sebagai bahan baku bioetanol. Kandungan pati yang terperangkap dalam dinding sel mikroalga menyebabkan perlunya cell distruption untuk melepaskan sekaligus mengkonversi pati menjadi glukosa sederhana sebelum proses fermentasi. Penelitian ini bertujuan untuk membuka dinding sel mikroalga sekaligus mengeksplorasi pengaruh enzim sellulase dari aspergillus niger sebagai strategi cell distruption mikroalga serta melakukan optimasi parameter proses yaitu konsentrasi enzim, suhu, pH, dan waktu yang memberikan yield glukosa tertinggi. Hasil penelitian menunjukkan bahwa yield glukosa tertinggi adalah 82,44% (w/w) yang diperoleh pada konsentrasi enzim 30% (w/w), suhu 450C, pH 4,5 pada waktu 40 menit, dengan jumlah mikroalga 0,5 g/L. Secara umum, metode cell distruption dengan menggunakan enzim sellulase terbukti menjadi pilihan yang menjanjikan untuk membuka dinding sel mikroalga sekaligus mengkonversi selulosa menjadi glukosa sederhana dalam memproduksi bioetanol.

 

Other format:

Keywords
bioetanol, cell distruption, enzimatis, mikroalga, selulosa, pati

Article Metrics:

Article Info
Section: Research Article
Language: IND
Full Text:
Statistics: 1168 1686
  1. Balat, M., Balat, H., and Oz, C., (2008), Progress in bioethanol processing, Prog. Energy Combust. Sci., 34, pp. 551–573
  2. Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., and Chang, J.S., (2011), Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol. 102, pp. 71-81.
  3. Chen, C.Y., Zhao, X.Q., Yen, H.W., Ho, S.H., Cheng, C.L., Lee, D.J., Bai, F.W., and Chang, J.S., (2013), Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, 78, pp. 1-10.
  4. Choi, S.P., Nguyen, M.T., and Sim, S.J., (2010), Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production, Bioresour. Technol. 101, pp. 5330–5336.
  5. Chu, F.L.E., Dupuy, J.L., and Webb, K.L., (1982), Polysaccharide composition of five algal species used as food for larvae of the American oyster, Crassostrea virginica, Aquaculture, 29, pp. 241–252.
  6. Datta, R., (1981). Acidogenic Fermantation Of Lignocellulose-Acid Yield And Conversion Of Components, Journal of Biotechnology and Bioengineering, 23 (9), pp. 2167-2170.
  7. Domozych, D.S., Ciancia, M., Fangel, J.U., Mikkelsen, M.D., Ulvskov, P., and Willats, W.G.T., (2012), The cell walls of green algae: a journey through evolution and diversity, Front. Plant Sci., 3, pp. 82
  8. Harun, R., Danquah, M.K., and Forde, G.M., (2010), Microalgal biomass as a fermentation feedstock for bioethanol production, J. Chem. Technol. Biotechnol. 85, pp, 199-203.
  9. Harun, R., Michael, K. and Danquah, (2011), Enzymatic hydrolysis of microalgal biomass for bioethanol production, Chemical Engineering Journal, 168, pp.1079-1084.
  10. Ho, S.H., Chen, C.Y., Lee, D.J., and Chang, J.S., (2011), Perspectives on microalgal CO2-emission mitigation systems – a review, Biotechnol. Adv., 29, pp. 189-198.
  11. Ho, S.H, Huang, S.W., Chen C.Y., Hasunuma, T., Kondo, A., and Chang, J.S.,(2013), Bioethanol production using carbohydrate-rich microalgae biomass as feedstock, Bioresource Technology, 135, pp. 191-198.
  12. John, R.P., Anisha, G.S., and Nampoothiri, M.K., (2011), Ashok Pandey Micro and macroalgal biomass: A renewable source for bioethanol, Bioresource Technology, 102, pp. 186-193
  13. Lee, O.K., Oh, Y.K., and Lee, E.Y., (2015), Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1, Bioresource Technology, 196, pp. 22-27
  14. Lee, O.K., Seong, D.H., Lee, C.G., and Lee, E.Y., (2015), Sustainable production of liquid biofuels from renewable microalgae biomass, Journal of Industrial and Engineering Chemistry, 29, pp. 24-31.
  15. Libessart, N., Maddelein, M.L., Koornhuyse, N., Decq, A., Delrue, B., Mouille, G.,D’Hulst, C., and Ball, S., (1995), Storage, photosynthesis and growth: the conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas. Plant Cell, 7, pp. 1117-1127.
  16. Lynd, L.R., Weimer, P.J., van Zyl, and Pretorius W.H., (2002), Microbial cellulose utilization: fundamentals and biotechnology, Microbiol. Mol. Biol. Rev. 66 (3), pp. 506-577
  17. Mussgnug J.H., Klassen V., Schluter A., and Kruse O., (2010), Microalgae as substrates for fermentative biogas production in a combined biorefinery concept, J. Biotechnol. 150, pp. 51-56.
  18. Nigam, P.S., and Singh, A., (2010), Production of liquid biofuels from renewable resources, Prog. Energy Combust. Sci. doi:10.1016/j.pecs. 01, pp. 003.
  19. Rabelo, S.C, Filho, R.M, and Costa, A.C., (2009), Lime pretreatment of sugarcane bagasse for ethanol production. Appl Biochem Biotechnol, 153, pp.139-50.
  20. Shuler, M.L. and Kargi, F., (1991), Bioprocess Engineering: Basic Concepts, Prentice-Hall College Div., pp 75-78
  21. Sudarmadji, S., Haryono, B., dan Suhardi. (1997), Prosedur Analisa Untuk Bahan Makanan dan Pertanian, Yogyakarta: Liberty.