skip to main content

KAJIAN PROSES PRODUKSI KATALIS MIKROSFERIK UNTUK PERENGKAHAN MINYAK BUMI DENGAN PENGERING SEMBUR

AJI HENDRA SAROSA  -  Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
*Tjokorde Walmiki Samadhi  -  Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung, Indonesia
B Budiyanto  -  Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Bandung
Received: 7 Sep 2015; Published: 17 Jan 2016.

Citation Format:
Abstract

STUDY OF SPRAY DRYING PROCESS FOR THE PRODUCTION OF PETROLEUM CRACKING CATALYST. Catalyst for the hydrocarbon fluid catalytic cracking (FCC) process consists of zeolite, matrix, fillers, and binders. The FCC catalyst has a microsphere form (10-120 µm), and can be produced by spray drying. Operating conditions of spray drying affect the characteristics of the microspheres FCC catalyst. The composition slurry (24% by weight) is 27% (by weight) of zeolite NaY, 33% (by weight) of Belitung kaolin, 20% (by weight) of silica alumina, 20% (by weight) of silica sol. The slurry is fed to spray dryer with constant air temperature of 190oC, ratio of atomizing air flow to slurry feed rate between 0.75:1 to 1:1, hot air flow rate between 0.2-0.3 m3/min, and slurry feed rate between 15-20 mL/min. Catalyst particle size distribution produced is in the range of 0.3752-161.1770 µm. Angle of repose of the dry product isin the 41.45-49.00 range, which translates to a flowability between passable and poor. Statistical treatment of experimental data by ANOVA method indicates that hot air velocity and interaction between the atomizing air to slurry feed rate ratio and the hot air velocity significantly affect the average particle size. The interaction between the atomizing air to slurry feed ratio with hot air velocity significantly affect particle size distribution as well.

Keywords: FCC catalyst; operation conditions; spray drying

Abstrak

Katalis FCC memiliki empat komponen yaitu zeolit, matriks, bahan pengisi, dan bahan pengikat. Katalis FCC berbentuk mikrosfer berukuran 10-120 µm. Produksi katalis FCC melibatkan operasi pengering sembur. Kondisi operasi pengering sembur mempengaruhi karakteristik katalis FCC mikrosfer. Campuran slurry (24% berat) memiliki komposisi 27% (berat) zeolit NaY, 33% (berat) kaolin Belitung, 20% (berat) silika alumina, 20% (berat) silika sol. Slurry diumpankan ke pengering sembur dengan temperatur udara konstan 190oC, nisbah antara laju udara atomisasiterhadap laju alir umpan 0,75:1-1:1, laju alir udara panas 0,2-0,3 m3/min, dan laju umpan masuk 15-20 mL/min. Percobaan menghasilkan distribusi ukuran partikel sebesar 0,3752 µm hingga 161,1770 µm. Nilai analisis sudut diam 41,4498 sampai 48,9666, menunjukkan kriteria sifat aliran antara passable dan poor. Pengolahan data percobaan dengan metode ANOVA menunjukkan kecepatan udara panas masuk dan interaksi antara nisbah laju udara atomisasi terhadap laju alir umpan dengan kecepatan udara panas masuk berpengaruh secara signifikan terhadap rata-rata ukuran partikel dan rentang distribusi ukuran katalis FCC.

Fulltext View|Download
Keywords: katalis FCC, kondisi operasi, pengering sembur

Article Metrics:

  1. Bakker, H.H.C., (1988), Control of particle size distributions in spray dryer at two-fluid nozzles, A thesis of Doctor of Philosophy in Chemical Engineering in the University of Canterbury, New Zealand
  2. Hosny, K.M. and Alahdal, A.M., (2013), Utilization of solid dispersion technique to improve solubility and flowability of acyclovir, Life Science Journal, 10(4), pp. 40-44
  3. Huang, L., Kumar, K., and Mujumdar, A.S., (2004), Spray evaporation of different liquids in a drying chamber-effect on flow, heat, and mass transfer performances, Chinese J. Chem. Eng.,12(6), pp.737-743
  4. Lumay, G., Boschini, F., Traina, K., Bontempi, S., Remy, J.C., Cloots, R., and Vandelwalle, N., (2012), Measuring the flowing properties of powders and grains, Powder Technology, 224, pp. 19-27
  5. Magee, J.S. and Mitchell, M.M, Jr., (1993), Fluid catalytic cracking: science and technology, Elsevier: Amsterdam, The Netherlands
  6. Masters, K., (1991), Spray drying handbook, Fifth Edition, John Wiley & Sons, Inc., United States of America
  7. Meyers, R.A., (2004), Handbook of petroleum refining processes, Third Edition, McGraw-Hill, United States of America
  8. Montgomery, D.C., (2001), Design and analysis of experiments, Fifth Edition, John Wiley & Sons, Inc., United States of America
  9. Murray, H.H., (2007), Applied clay mineralogy: occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays, First Edition, Elsevier, Amsterdam, The Netherlands
  10. Perez, P.G., Pagnoux, C., Pringuet, A., Videcoq, A., and Baumard, J.F., (2007), Agglomeration of alumina submicronparticles by silica nanoparticle: application to processing sphere by colloidal route, Journal of Colloid and Interface Science, 313, pp. 527-536
  11. Sadeghbeigi, R., (2012), Fluid catalytic cracking handbook, Third Edition, Butterwoth-Heinemann. USA, Chapter 3-4
  12. Samadhi, T.W. dan Nugraha, F.E., (2012), Rekayasa mikrosfer zeolit sebagai penyangga katalis FCC dengan bahan baku mineral kaolin, Jurnal Teknik Kimia Indonesia, 11(3), pp. 149-158
  13. Sanden, S.C.T van der., (2003), A fundamental study of spray drying fcc catalyst, Desertation, Eindhoven: Technische Universiteit Eindhoven, Belanda, pp. 45-83
  14. Sanden, S.C.T van der., Coumans, W.J., and Kerkhof, P.J.A.M., (2004), The drying behaviour of multi-component fluid catalytic cracking catalyst, Proceedings of the 14th International Drying Symposium (IDS 2004), São Paulo, Brazil, vol. B, pp. 1089-1096
  15. Zhongdong, Z., Zhaoyong, L., Zifeng, Y., Yi, W., Haitao, Z., and Zhifeng, W., (2014), Research on new silica sol matrix used in fluid catalytic cracking reaction, China Petroleum Processing Ana Petrochemical Technology 2014, 16(2), pp 29-33

Last update:

No citation recorded.

Last update: 2024-12-26 15:03:26

No citation recorded.