*Hendri Widiyandari  -  Department of Physics, Diponegoro University, Indonesia, Indonesia
Agus Purwanto  -  Department of Chemical Engineering, Indonesia
Received: 28 Nov 2015; Published: 19 Jan 2016.
Open Access

Citation Format:
Article Info
Section: Research Article
Language: EN
Statistics: 1276 1608

SYNTHESIS OF ANATASE TITANIUM DIOXIDE (TiO2) NANOFIBER BY ELECTROSPINNING METHOD. This research reported the synthesis of nanofiber anatase titanium dioxide (TiO2) using electrospinning. To produce nanofiber, the precursor solution was passed through a capillary of syringes given a positive DC voltage of 13 kV and then as-prepared nanofiber annealed at temperature of 500°C for 1 hour. The annealed samples were then analyzed using a scanning electron microscope (SEM) and x-ray diffractometer (XRD). In this study, the effect of changes in the flow rate of the precursor solution and the weight of raw material of titanium tetraisopropoxide (TTIP) to the crystallinity and morphology of the sample were systematically investigated. This research resulted that the TiO2 nanofiber have a mixed phase between anatase and rutile. The amount of rutile TiO2 could be reduced by increasing the flow rate of precursor solution. The optimum flow rate to obtain the pure anatase TiO2 was adjusted at 2.0 mL/h. In addition. TTIP weight affected the morphology of nanofiber which by increasing the amount of TTIP resulted morphological change to become more dense and uniform in shape and size.

Keywords: anatase; electrospinning; nanofiber; rutile; titania


Pada penelitian ini telah berhasil dibuat nanofiber titanium dioksida (TiO2) anatase dengan menggunakan metode electrospinning. Nanofiber TiO2 dihasilkan dengan cara melewatkan larutan prekursor pada jarum suntik yang diberi tegangan DC positif 13 kV pada ujungnya. Fiber hasil spinning kemudian dikalsinasi pada suhu 500°C selama 1 jam. Sampel yang telah dikalsinasi kemudian dianalisis menggunakan scanning electron microscope (SEM) dan x-ray diffractometer (XRD). Pada penelitian ini pengaruh dari perubahan laju aliran larutan prekursor dan berat material baku titanium tetraisopropoxide (TTIP) terhadap sifat kristal dan morfologi sampel dikaji secara sistematis.  Dari penelitian ini diperoleh bahwa TiO2 yang dihasilkan memiliki fase campuran antara anatase dan rutile, namun dengan menaikkan laju aliran prekursor mampu menurunkan jumlah fase rutilenya sehingga pada laju aliran 2,0 mL/h diperoleh nanofiber TiO2 dengan fase anatase murni. Berat TTIP sangat mempengaruhi morfologi nanofiber yang diperoleh dimana dengan menaikkan jumlah TTIP morfologi fiber mangalami perubahan menjadi lebih padat (dense) dan lebih seragam baik bentuk dan ukurannya.

Kata kunci: anatase; electrospinning; nanofiber; rutile; titania


Keywords: Nanomaterial and nanotechnology

Article Metrics:

  1. Camposeco, R., Castillo, S., Isidro Mejia-Centeno, Navarrete, J., and Gómez, R., (2014), Effect of The Ti/Na Molar Ratio on The Acidity and The Structure of TiO2 Nanostructures: Nanotubes, Nanofibers and Nanowires, Mater Charact, 90, pp. 113-120.
  2. Chuangchote, S., Jitputti, J., Sagawa, T., and Yoshikawa, S., (2009), Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO2 Nanofibers, ACS Appl Mater Interfaces ,1, pp. 1140-1143.
  3. Li, Z., Zhang, H., Zheng, W., Wang, W., Huang, H., Wang, C., MacDiarmid, A.G., and Wei, Y., (2008), Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers, J Am Chem Soc, 130, pp. 5036-5037.
  4. Lin, Y., Wu, G.S., Yuan, X.Y., Xie, T., and Zhang, L.D., (2003), Fabrication and Optical Properties of TiO2 Nanowire Arraysmade by Sol–Gel Electrophoresis Deposition into Anodic Alumina Membranes, J Phys Condens Mat, 15, pp. 2917-2922.
  5. Liu, J., Danielle, L., McCaryhy, Michael, J.C., Emilly, A.O., Jared, B., DeCoste, Kenneth, H.S., Linyue, T., Steven, M.B., and William E.B., (2016), Photocatalytic Activity of TiO2 Polycrystalline Sub-Micron Fibers With Variable Rutile Fraction, Appl Catal B-Environ, 187, pp. 154-162.
  6. Moon J., Park J.A., Lee S.J., Zyung T., Kim I.D., (2010), Pd-doped TiO2 Nanofiber Networks for Gas Sensor Applications, Sensors Actuat B-Chem. 149, pp. 301-305.
  7. Modesti, M., Roso, M., Boaretti, C., Besco, S., Hrelja, D., Sgarbossa, P., Lorenzetti, A., (2014), Preparation of Smart Nano-Engineered Electrospun Membranes Formethanol Gas-Phase Photooxidation, Appl Catal B-Environ., 144, pp. 216-222.
  8. Ramasundaram, S., Yoo, H.N., Song, K.G., Lee, J., Choi, K.J., and Hong, S.W., (2013), Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds, J Hazard Mater, 258–259, pp. 124-132.
  9. Song, M.Y., Kim, D.K., Ihn, K.J., Jo, S.M., Kim, D.Y., (2004), Electrospun TiO2 Electrodes for Dye Sensitized Solar Cells, Nanotechnology 15, pp. 1861-1865
  10. Xia, M., Zhang, Q., Li, H., Dai, G., Yu, H., Wang, T., Zou, B., and Wang, Y., (2009), The Large-Scale Synthesis of One-Dimensional TiO2 Nanostructures Using Palladium as Catalyst at Low Temperature, Nanotechnology, 20, pp. 055605
  11. Yuan, Z.Y. and Su, B.L., (2004), Titanium Oxide Nanotubes, Nanofibers and Nanowires, Colloid Surface A., 241, pp.173-183.