skip to main content

POTENSI KOMBINASI EKSTRAK Halimeda sp. DAN SAMBILOTO SEBAGAI IMUNOSTIMULATOR BAGI LANSIA DARI PAPARAN COVID-19

*Putut Har Riyadi orcid scopus publons  -  Department of Fish Product Technology, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Nurul Khayati  -  Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Mita Diana Silsilia  -  Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Rachma Asyifa Surya  -  Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Sesa Sabrina Aryanti  -  Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Shafa Ardellia Mulyadi  -  Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia

Citation Format:
Abstract

Pandemi covid-19 menyebabkan krisis utama kesehatan masyarakat. Kondisi lansia yang renta dan biasanya memiliki imunitas tubuh yang lemah dapat berakibat fatal apabila terpapar virus covid-19. Salah satu upaya yang dapat dilakukan agar lansia tercegah dari paparan covid-19 yaitu dengan perlindungan dari dalam tubuh dengan memiliki sistem imunitas yang kuat. Peningkatan imunitas pada lansia yaitu dengan mengonsumsi bahan makanan yang memiliki senyawa antioksidan tinggi, di antaranya adalah alga Halimeda sp dan Sambiloto. Penelitian ini bertujuan untuk mengetahui karakteristik dan potensi senyawa kombinasi ekstrak alga Halimeda sp. dan sambiloto untuk meningkatkan imunitas tubuh menggunakan analisa in silico. Nilai total fenol dan IC50 terbaik didapatkan dari perlakuan 1:1 rasio berat antara ekstrak kasar alga Halimeda sp dengan ekstrak kasar daun sambiloto. Analisa GC-MS dengan kualitas skrinning di atas 85 % mendapatkan 3 (tiga) senyawa yaitu 2- Butoxyethanol (74,12 %), gamma-Butyrolactone (23,72 %) dan Phenol (2,15 %). Senyawa tersebut mempunyai potensi sebagai antioksidan, anti-inflamasi, immunostimulator maupun antivirus berdasarkan PASS server. Semua senyawa mempunyai potensi drug-likeness, penyerapan, distribusi, metabolisme, ekskresi dan toksisitas yang baik dalam tubuh berdasarkan analisa in silico (SwissADME dan Pro Tox II). Hal ini dapat menjadi dasar pengembangan nutraceutical untuk lansia dalam rangka meningkatkan imunitas dan mencegah paparan Covid-19.

 

The COVID-19 pandemic is causing a significant public health crisis. The elderly who are old and usually have a weak immune system can be fatal if exposed to the Covid-19 virus. One of the efforts that can be done so that the elderly are prevented from exposure to COVID-19 is by protecting them from within the body by having a strong immune system—increasing immunity in the elderly by consuming foods with high antioxidant compounds, including the algae Halimeda sp and Sambiloto. This study aims to determine the characteristics and potency of Halimeda sp. and bitter combination compound to increase body immunity using in silico analysis. The best total phenol and IC50 values were obtained from the 1:1 weight ratio treatment between the crude extract of Halimeda sp algae and the crude extract of bitter leaf. GC-MS analysis with screening quality above 85% obtained 3 (three) compounds, namely 2-Butoxyethanol (74.12%), gamma-Butyrolactone (23.72%), and Phenol (2.15%). These compounds have potential as antioxidants, anti-inflammatory, immunostimulators, and antivirals based on the PASS server. All compounds have good drug-likeness potential, absorption, distribution, metabolism, excretion, and toxicity in the body based on in silico analysis (SwissADME and Pro Tox II). It can be the basis for developing nutraceuticals for the elderly to increase immunity and prevent exposure to Covid-19.

Fulltext View|Download
Keywords: Halimeda sp; Imunostimulator; Covid19; In silico; Sambiloto

Article Metrics:

  1. Akbar, S., 2011. Andrographis paniculata: a review of pharmacological activities and clinical effects. Alternative Medicine Review, 16 (1): 66-77
  2. Ali, J., Camilleri, P., Brown, M.B., Hutt, A.J. and Kirton, S.B., 2012. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. Journal of chemical information and modeling, 52(2): 420-428. https://doi.org/10.1021/ci200387c
  3. Bouic, P.J. and Lamprecht, J.H., 1999. Plant sterols and sterolins: a review of their immune-modulating properties. Altern Med Rev, 4(3):170-177. https://doi.org/10.1007/ s11130-004-0049-7
  4. Cao, G., Sofic, E. and Prior, R.L., 1997. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free radical biology and medicine, 22(5): 749-760. https://doi.org/10.1016/S0891-5849(96)00 351-6
  5. Chandran, A., Merlin, N.J., Ammu, L. and Dharan, S.S., 2019. Fennel Treatment to PCOS: An Insilico Evaluation to explore the Therapeutic Efficacy of Anethole. Research Journal of Pharmacy and Technology, 12(10): 4958-4962. https://doi.org/10.5958/0974-360X.2019. 00860.6
  6. Daina, A. and Zoete, V., 2016. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11): 1117-1121. https://doi.org/10.1002/cmdc.201600 182
  7. Daina, A., Michielin, O. and Zoete, V., 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1): 1-13. https://doi.org/10.1038/srep42717
  8. Dewanto, D. K., Hermawan, R., Muliadin, M., Riyadi, P. H., Aisiah, S., & Tanod, W. A., 2021. Profil GC-MS dari ekstrak daun Rhizophora apiculata dari pesisir Teluk Tomini, Sulawesi Tengah dengan aktivitas antibakteri dan antioksidan. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 14(1): 30-42. https://doi.org/10.21107/jk.v14i1.8904
  9. Di, L., Artursson, P., Avdeef, A., Ecker, G.F., Faller, B., Fischer, H., Houston, J.B., Kansy, M., Kerns, E.H., Krämer, S.D. and Lennernäs, H., 2012. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug discovery today, 17(15-16): 905-912. https://doi.org/10.1016/j. drudis.2012.03.015
  10. Dyer O., 2021. Covid-19: Indonesia becomes Asia’s new pandemic epicentre as delta variant spreads. BMJ, 374: n1815. https://doi.org/ 10.1136/bmj.n1815
  11. Fithriani, D., Amini, S., Melanie, S., Susilowati, R., 2015. Uji Fitokimia, Kandungan Total Fenol Dan Aktivitas Antioksidan Mikroalga Spirulina Sp., Chlorella Sp., dan Nannochloropsis Sp. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 10 (2): 101-109
  12. Gazali, M. and Zamani, N.P., 2019. The screening of bioactive compound of the green algae Halimeda macroloba (Decaisne, 1841) as an antioxidant agent from Banyak Island Aceh Singkil. In IOP Conference Series: Earth and Environmental Science 348 (1): 012043). IOP Publishing. https://doi.org/10.1088/ 1755-1315/348/1/012043
  13. Girdhar, R., Srivastava, V. and Sethi, S., 2020. Managing mental health issues among elderly during COVID-19 pandemic. J. Geriatr. Care Res, 7: 32-35
  14. Karakaya, S., 2004. Bioavailability of phenolic compounds. Critical Reviews in Food Science and Nutrition, 44: 453–464. https://doi.org/10.1080/10408690490886683
  15. Kiokias, S., Varzakas, T. and Oreopoulou, V., 2008. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Critical reviews in food science and nutrition, 48(1): 78-93. https://doi.org/ 10.1080/10408390601079975
  16. Lipinski, C. A., 2016. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced drug delivery reviews, 101: 34-41. https://doi.org/10.1016/j.addr.2016.04.029
  17. Molyneux, P., 2004. The use of the stable free radical diphenylpicryl- hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26: 211–219. https://doi.org/ 10.1287/isre.6.2.144
  18. Moriguchi, I., Hirono, S., Nakagome, I. and Hirano, H., 1994. Comparison of reliability of log P values for drugs calculated by several methods. Chemical and pharmaceutical bulletin, 42 (4): 976-978. https://doi.org/ 10.1248/cpb.42.976
  19. Mussard, E., Cesaro, A., Lespessailles, E., Legrain, B., Berteina-Raboin, S. and Toumi, H., 2019. Andrographolide, a natural antioxidant: an update. Antioxidants, 8(12): 571. https:// doi.org/10.3390/antiox8120571
  20. Naczk, M., & Shahidi, F. 2004. Extraction and analysis of phenolics in food. Journal of Chromatography. A, 1054: 95–111. https:// doi.org/10.1016/j.chroma.2004.08.059
  21. Nehme, M., Braillard, O., Alcoba, G., Aebischer Perone, S., Courvoisier, D., Chappuis, F. and Guessous, I., 2021. COVID-19 symptoms: longitudinal evolution and persistence in outpatient settings. Annals of internal medicine, 174(5): 723-725. https:// doi.org/10.7326/M20-5926
  22. Oak, M. H., El Bedoui, J., Schini-Kerth, V. B., 2005. Antiangiogenic properties of natural polyphenols from red wine and green tea. Journal of Nutritional Biochemistry, 16: 1–8. https://doi.org/10.1016/j.jnutbio.2004.09.004
  23. Raschka, S., Wolf, A.J., Bemister-Buffington, J. and Kuhn, L.A., 2018. Protein–ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes. Journal of computer-aided molecular design, 32(4): 511-528. https://doi.org/10.1007/s10822-018-0105-2
  24. Ritchie, R.O., 2011. The conflicts between strength and toughness. Nature materials, 10(11): 817-822. https://doi.org/10.1038/nmat3115
  25. Riyadi, P.H., Darmanto, Y.S., Anggo, A.D., Herawati, V.E., Kurniasih, R.A., 2020a. Potential of hydrolyzed waste in Portunus sp. non-shell as nutraceutical with bioinformatics analysis. Journal of Engineering and Applied Sciences, 15: 2327-2331. http://dx.doi.org/10.36478/jeasci.2020. 2327.2331
  26. Riyadi, P.H., Romadhon, R., Anggo, A.D., Herawati, V.E. and Setyastuti, A.I., 2020b. PASS and ADMET analyses for eight compounds from Nile tilapia (Oreochromis niloticus) viscera waste hydrolysate as anti-inflammatory nutraceutical. Aquaculture, Aquarium, Conservation & Legislation, 13(5): 2630-2638
  27. Riyadi, P.H., Tanod, W.A., Dewanto, D.K., Herawati, V.E., Susanto, E. and Aisiah, S., 2021. Chemical profiles and antioxidant properties of Bruguiera gymnorrhiza fruit extracts from Central Sulawesi, Indonesia. Food Research, 5(3): 37-47. https://doi.org/10.26656/fr.2017.5(S3).007
  28. Riyadi, P.H., Tanod, W.A., Wahyudi, D., Susanto, E., Fahmi, A.S. and Aisiah, S., 2020c. Potential of tilapia (Oreochromis niloticus) viscera bioactive peptides as antiviral for SARS-CoV-9 2 (COVID 19). IOP Conf. Ser.: Earth Environ. Sci. 584: 012004. https://doi.org/10.1088/1755-1315/584/1/ 012004
  29. Sanders, J.M., Monogue, M.L., Jodlowski, T.Z. and Cutrell, J.B., 2020. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. Jama, 323(18): 1824-1836. https://doi.org/10.1001/jama.2020.6019
  30. Sang, S., Lapsley, K., Jeong, W.S., Lachance, P.A., Ho, C.T. and Rosen, R.T., 2002. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). Journal of Agricultural and Food Chemistry, 50(8): 2459-2463. https:// doi.org/10.1021/jf011533+
  31. Setiati, S. and Azwar, M.K., 2020. COVID-19 and Indonesia. Acta Medica Indonesiana, 52(1): 84-89
  32. Shetty, K., 2004. Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review. Process Biochemistry, 39(7): 789-804. https://doi.org/10.1016/S0032-9592(03) 00088-8
  33. Siramshetty, V.B., Nickel, J., Omieczynski, C., Gohlke, B.O., Drwal, M.N., Preissner, R., 2016. WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucleic acids research 44 (D1): D1080-D1086. https://doi.org/10.1093/nar/gkv1192
  34. Taghizadeh-Hesary, F. and Akbari, H., 2020. The powerful immune system against powerful COVID-19: A hypothesis. Medical hypotheses, 140: 109762. https://doi.org/ 10.1016/j.mehy.2020.109762
  35. Tripathi, P., Ghosh, S. and Talapatra, S.N., 2019. Bioavailability prediction of phytochemicals present in Calotropis procera (Aiton) R. Br. by using Swiss-ADME tool. World Scientific News, 131: 147-163
  36. Yang, C.S., Landau, J.M., Huang, M.T. and Newmark, H.L., 2001. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual review of nutrition, 21(1): 381-406. https://doi.org/ 10.1146/annurev.nutr.21.1.381
  37. Yao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. A., Datta, N., Singanusong, R., Chen, S. S., 2004. Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 59: 113–122. https://doi.org/10.1007/ s11130-004-0049-7

Last update:

No citation recorded.

Last update: 2024-03-28 18:26:06

No citation recorded.